The Construction of Formal Specifications: An Introduction to the Model-Based and Algebraic Approaches

J.L. TURNER & T.L. McCUSKEY

October 1992
Contents

Preface 8

1 Introduction to Formal Specification 11
 1.1 A First Specification Language 11
 1.2 What is a Software Specification? 15
 1.3 What is a Formal Specification? 17
 1.4 The Scope of this Book 19
 1.5 Summary ... 20

2 Mathematical Structures for Formal Specification 21
 2.1 Introduction .. 21
 2.2 Sets ... 21
 2.2.1 Terminology 21
 2.2.2 Subsets .. 22
 2.2.3 Equality .. 23
 2.2.4 Intersection 23
 2.2.5 Union ... 23
 2.2.6 Null or Empty Set 24
 2.2.7 Disjoint Sets 24
 2.2.8 Cardinality and Finite Sets 24
 2.2.9 Power Set ... 24
 2.2.10 Set Difference 25
 2.2.11 Associativity and Commutativity 25
 2.3 Cartesian Product and Tuples 25
 2.4 Mappings .. 26
 2.4.1 Relations and Mappings 27
 2.4.2 Domain and Range 28
 2.4.3 Composition of Mappings 28
 2.4.4 Mappings and PASCAL 28
 2.5 Types of Mapping (Function) 29
 2.5.1 Injective ... 29
 2.5.2 Surjective .. 29
 2.5.3 Bijective ... 29
 2.5.4 Total and Partial Mappings 31
 2.5.5 Two Examples of Mappings 31
 2.6 Binary Relations 32
 2.6.1 Equivalence Relation 33
 2.6.2 Partitions and Equivalence Classes 34
 2.6.3 Partial Ordering 35
4.4.4 Proof Obligations ... 90
4.5 The Map Data Type .. 90
 4.5.1 Intuitive view of maps 90
 4.5.2 Map Operations .. 91
4.6 The Symbol Table ... 94
 4.6.1 Requirement ... 94
 4.6.2 Creation of a System State: First Attempt 94
 4.6.3 Creation of the System State: A better attempt 96
 4.6.4 Construction of the Data Type Invariant 97
 4.6.5 Modelling of the Operations 97
4.7 Summary .. 99

5 Building Up VDM Specifications 101
 5.1 Introduction .. 101
 5.2 User-Defined Functions 102
 5.2.1 Function Definitions in VDM 102
 5.2.2 Proof Obligations for Implicitly Defined Functions . 104
 5.2.3 Explicitly Defined Functions 104
 5.2.4 Proof Obligations for Explicitly Defined Functions . 105
 5.2.5 The Relationship between Implicit and Explicit Functions . 106
 5.2.6 An Inductive Proof 106
 5.2.7 Induction and Proof Obligations 109
 5.2.8 Partial Functions 110
 5.3 The Specification of a Partial Order 111
 5.3.1 Weak and Strong Partial Orders 111
 5.3.2 A Plan as a Strong Partial Order of Actions 112
 5.3.3 Developing the Specification 114
 5.3.4 Creation of the Partial Order Data Type 114
 5.3.5 The Data Type Invariant 115
 5.3.6 Modelling the Operations 117
 5.3.7 Proof Obligations 118
 5.4 An Extension to the Specification 119
 5.4.1 New Requirements 119
 5.4.2 A New Data Model 119
 5.4.3 Modelling the New Operations 121
5.5 Summary .. 121

6 Specification Case Study in VDM 123
 6.1 Introduction ... 123
 6.2 Automatic Planning .. 124
 6.2.1 Objects in the Blocks World 125
 6.2.2 Actions in the Blocks World 126
 6.2.3 Action Application 127
 6.2.4 Plans .. 129
 6.3 An Abstract Specification of the Planner 131
 6.3.1 A VDM Representation of Planning Problems 131
 6.3.2 Exercises 6.3 .. 133
 6.3.3 Invariants for the Planning Problem 133
 6.3.4 A First Specification of the Planner 134
6.4 A Design Level Specification 137
6.4.1 A Technique for Solving Planning Problems 137
6.4.2 An Introduction to Goal Achievement in Planning 139
6.4.3 Modelling the VDM State 142
6.4.4 The State Invariant 145
6.4.5 VDM Operations 147
6.4.6 Proof Obligations 151
6.5 Summary ... 152

7 Prototyping VDM Specifications 155
7.1 Introduction ... 155
7.2 Prolog as a Prototyping Language for VDM 156
 7.2.1 Prolog ... 156
7.3 VDM to Prolog Translation 158
 7.3.1 Data Type Implementation 159
 7.3.2 Operator Translation 162
 7.3.3 The Existential Quantifiers 165
 7.3.4 The Universal Quantifier 166
 7.3.5 Prototyping Pitfalls 168
7.4 The Planner Prototype 170
 7.4.1 The INIT Operator 170
 7.4.2 The ACHIEVE Operators 171
7.5 Summary ... 175

8 Algebraic Specification of Abstract Data Types 177
8.1 Introduction ... 177
8.2 Specification of Abstract Data Types 178
 8.2.1 Sorts and Types of Interest 181
 8.2.2 The Syntax of the Operations 182
 8.2.3 Constructors and Accessors 182
 8.2.4 Exercises .. 182
8.3 Semantic Specification in Modula-2 and Ada 183
8.4 Algebraic Specification of Abstract Data Types 185
 8.4.1 An Algebraic Specification Language 186
 8.4.2 Pre-defined Types 188
8.5 Algebraic Specification of an Unbounded Stack 188
 8.5.1 The Operations and their Syntax 188
 8.5.2 Sorts .. 189
 8.5.3 Axioms for the Unbounded Stack 189
 8.5.4 Interpretations of a Signature 192
 8.5.5 Comparison with VDM 193
8.6 Completeness .. 193
8.7 Examples of Evaluations 194
 8.7.1 Example 1 ... 195
 8.7.2 Example 2 ... 195
8.8 Axioms and Term Rewriting 196
 8.8.1 Pattern Matching and Unification 198
 8.8.2 Term Rewriting Example 199
 8.8.3 Term Rewriting for Stack 200
8.9 Summary ... 201
9 The Queue and Binary Tree

9.1 Introduction ... 207
9.2 Atomic Constructors .. 208
9.3 Heuristics for Axiomatisation 209
9.4 Algebraic Specification of a Queue of Natural Numbers 209
 9.4.1 Axiomatisation for Queue 210
 9.4.2 Examples of Evaluating Terms 213
 9.4.3 Exercises ... 215
 9.4.4 Specification of Stack and Queue using VDM 216
9.5 Algebraic Specification of a Binary Tree 216
 9.5.1 Simple Examples of Binary Trees 218
 9.5.2 Tree Traversal 220
9.6 Hidden Operations ... 222
9.7 VDM Specification of an Ordered Binary Tree 224
 9.7.1 The VDM Operation build 226
 9.7.2 The VDM Operations left_tree and right_tree 226
 9.7.3 The VDM Operation node 227
 9.7.4 The VDM Operation is_empty? 227
 9.7.5 The VDM Operation is_in? 227
9.8 Functional Programming Languages and Data Types ... 227
9.9 Errors and Algebraic Specifications 229
 9.10 Use of Error Values 231
 9.10.1 Strictness and Implicit Axioms 232
9.11 Subsorts and Subtypes 232
 9.11.1 Operation Overloading 233
9.12 Error Detection and Error Handling 234
9.13 Specification of a Stack 235
9.14 Summary .. 237

10 Algebras and Abstract Data Types 245

10.1 Introduction .. 245
10.2 Algebras .. 246
 10.2.1 Homogeneous or Single-sorted Algebras 246
 10.2.2 Heterogeneous or Many-sorted Algebras 247
 10.2.3 Models ... 247
10.3 Signatures and Heterogeneous Algebras 247
10.4 Interpretations of a Signature 248
10.5 Term Algebra .. 249
10.6 Transformations between Algebras 250
 10.6.1 Homomorphism 250
 10.6.2 Isomorphism 252
 10.6.3 Some Examples and a Counter Example 253
10.7 Axioms and Theory Presentations 255
 10.7.1 Axioms and Equational Logic 257
10.8 Algebras as Models of a Theory 258
 10.8.1 Model 1 258
 10.8.2 Model 2 259
10.9 Initial Algebras 260
 10.9.1 Initial Models - Junk and Confusion 261
10.9.2 Models of a Boolean Theory ... 262
10.9.3 The Importance of Initial Models 267
10.9.4 Models in VDM ... 268

10.10 Deriving an Initial Algebra
- 10.10.1 Quotient Term Algebra .. 269
- 10.10.2 Canonical Term Algebra and Reduced Expressions 270
- 10.10.3 Canonical Term Algebras and Implementations 270

10.11 Axioms as Equations .. 271
10.12 Axioms as Rewrite Rules ... 271
10.13 Operational Semantics .. 271
10.14 Initial versus Final Semantics .. 273
10.15 Summary .. 275
- 10.15.1 Signatures and Algebras ... 275
- 10.15.2 Theory Presentations and their Interpretations 276
- 10.15.3 Axioms as Rewrite Rules ... 277

11 Building Larger Specifications .. 283

11.1 Introduction ... 283
11.2 Estate Agent Example .. 285
- 11.2.1 For-sale and Under-offer Mode 285
- 11.2.2 Operations for the Database .. 285
- 11.2.3 Axioms for “delete-house” ... 289
- 11.2.4 Axioms for “is-on-market?” ... 290
- 11.2.5 Axioms for “is-under-offer?” .. 290
- 11.2.6 Axioms for “make-offer” .. 291
11.3 Compound Modules ... 295
- 11.3.1 Combinators .. 295
- 11.3.2 Module Expressions ... 295
11.4 Petrochemical Plant Example ... 296
- 11.4.1 Petrochemical Tank – Version 1 296
- 11.4.2 The Constructors “add-chem” and “fill” 301
- 11.4.3 Axioms for “remove”, “empty-tank” and “change-pc” 302
- 11.4.4 Axioms for Boolean-valued Operations 303
- 11.4.5 Axioms for “chem” and “level” .. 303
11.5 Petrochemical Tank - Version 2 .. 307

12 Canonical Terms and Proof Obligations 311

12.1 Introduction ... 311
12.2 Proof Obligation : Canonical Terms (Forms) 312
- 12.2.1 Canonical Terms and Reduced Expressions 312
12.3 Proof Obligations : Consistency and Completeness 314
- 12.3.1 Consistency .. 314
- 12.3.2 Completeness .. 314
- 12.3.3 Sufficient Completeness .. 314
- 12.3.4 Extensibility (Conservative Extension) 315
- 12.3.5 Validating an Algebraic Specification 316
- 12.3.6 Termination ... 316
12.4 Specification of a Set .. 317
- 12.4.1 Requirement .. 317
- 12.4.2 Additional Axioms .. 319
14.12 VDM Specification of the Neural Network ... 392
 14.12.1 Requirements ... 392
 14.12.2 Creation of a Data Model: First Attempt 392
 14.12.3 Creation of the Data Type Invariant: First Attempt 401
 14.12.4 Creation of a Data Model: Second Attempt 401
 14.12.5 Creation of Data Type Invariant: Second Attempt 403
 14.12.6 The Network Operation ... 403
 14.12.7 Exercises 14.8 .. 406
 14.13 Summary ... 407

15 Background, Comparison and Summary ... 409
 15.1 Introduction ... 409
 15.1.1 Likely Applications for Formal Specification 409
 15.1.2 Which Type of Formal Specification? 410
 15.2 Comparison of Specification Languages ... 411
 15.2.1 General .. 411
 15.2.2 Operator Definition .. 411
 15.2.3 Building Up Specifications ... 414
 15.2.4 The Data Type Invariant ... 415
 15.2.5 Specification versus High Level Programming Languages 415
 15.3 History and Applications ... 416
 15.3.1 VDM and Model-based Specification 416
 15.3.2 Algebraic Specification .. 418

Appendices .. 422
Preface

Aims of the Book

This book aims to introduce the reader to the field of Formal Specification. It should enable the reader to understand the role and nature of formal specifications of computer programs, and to develop skills at creating such specifications. We have endeavoured to make the book educational in nature, rather than a training guide to one particular notation or another.

The book has been written with the following objectives in mind. It should show the reader how to:

- *construct* specifications; books on Formal Methods do not generally contain adequate explanations of how a specifier goes about constructing specifications. They tend to present a specification as a *fait accompli*; the specification itself may be well documented, but the process of arriving at it is not.

- write formal specifications of sequential programs in *both* the algebraic and model-based styles. Also, several of the specifications in the book are developed in both styles: this helps the reader understand the differences between the two approaches, and leads to a greater understanding of formal specification itself.

- *prototype* the specifications once they have been created. The emphasis on prototyping rather than program development means that specifications can be validated without the specifier having to work through complicated refinement procedures.

We have tried to write the book in an intuitive and accessible fashion. Formal Methods have been slow to be adopted, and one reason is that books on the subject are inaccessible to students and practitioners alike. We have tried to pitch the book at a level which assumes only a standard background in logic, mathematics and programming.

The Readership

This book is aimed at being a coursebook on formal specification for use in Universities and Colleges, and as a self-tutor for computing professionals. Most degree schemes in Computer related disciplines now have material on Formal Specification/Methods in their second or third year undergraduate courses: we hope this book would contribute to providing an understanding and feel for Formal Specification in general (rather than simply developing specification-writing skills alone). Although a study of the two different kinds of specification methods covered by this book should provide the reader with a balanced view of the area, we have tried to make it possible to study them separately. Thus it is possible for a reader to study VDM in the first part of the book alone, or alternatively, starting at chapter 8, learn about algebraic approach to specification.
As a pre-condition to reading this book, we expect the background of the reader to include some programming, discrete mathematics and logic. Also, some experience in logic programming is essential for a full understanding of chapter 7, which uses Prolog as the prototyping language for VDM.

Structure of the Book

While chapter 1 and 2 serve as an introduction and a mathematical refresher, respectively, Chapters 3, 4, 5, and 6 cover model-based specification using VDM, and chapter 7 introduces the reader to prototyping VDM in Prolog. The lion’s share of the book is contained in Chapters 8 to 13, which cover the algebraic approach to specification. Chapter 14 contains a Case Study of a Neural Network, specified using both styles, and the book is rounded off with a discussion of both styles in chapter 15. Appendix 1 contains a full listing of the prototype derived from the case study in chapter 6, while appendix 2 contains prototypes derived from the algebraic specifications. Finally, we provide a glossary of terms used in algebraic specifications.

The particular choice of ordering of the two specification styles (with VDM first) was made on the basis of our experience in teaching the material: students find the algebraic style harder to grasp. With its underlying mathematical foundation in the area of category theory, it is hardly surprising that students often have difficulty when first meeting the algebraic approach: we have intentionally provided a more detailed exposition of it in order to overcome this problem.
Chapter 1

Introduction to Formal Specification

1.1 A First Specification Language

Imagine the following situation. You have learned your first programming language, and written many programs in it. Happily you have given them to a program compiler which translates the programs to a form which is executable. Let us assume the compiler (compiler ‘A’) is one which checks a program’s syntax first before proceeding onto the language translation stage. In the past, on the basis of its syntax analysis, it has always proceeded in one of two ways:

-it asserts the syntax of your program is correct, and proceeds to the language translation stage, displaying:

Starting program compilation..
==>program parsed correctly: yes
==>starting translation stage
....

or

-it aborts, displaying the syntax errors that have occurred:

Starting program compilation..
==>program parsed correctly: no

** compilation aborted **
Syntax error in line

Then one day something changes. Instead of making a definitive yes or no answer at the first stage, it makes the reply:
Starting program compilation...

==>

The compiler has checked your program’s syntax and answered that it *maybe* correct! The syntax of a programming language is generally very complex, and this is an answer you might expect from a person - but not from a compiler.

Of course this never happens, but why? The answer is that the programming language syntax you are using has been defined *precisely* - a string of characters representing a program either belongs in the language or it doesn’t. There is no maybe, no buts, no perhaps. The compiler has been written to embody this precise syntax definition, so that it will answer yes when your program conforms to it, or no when your program does not.

Returning to our hypothetical compilation session, imagine that, rather than replying with ‘maybe’, the compiler aborts, finding syntax errors in your program. Disgruntled, you decide to turn to another compiler (‘compiler B’) which was also written to compile programs for the same language. This time, when you input the same program file, compiler B returns:

Starting program compilation...

==>

program parsed correctly: **YES**

==>

starting translation stage

....

Now you are faced with two compilers, supposedly for the same programming language which give conflicting answers!

Of course this should never happen (and rarely does). Why? The reason is that the programming language syntax has been defined in an *unambiguous* way, so that any compiler which embodies this definition conforms to a unique interpretation. Also, the definition will most probably be written in a standard, compiler independent form which allows us to decide which compiler is wrong, in the event of disagreement.

Hence this precise, unambiguous definition of the syntax is very important for the writers of the compiler. How is it written? One way is to specify syntax using a graphical medium such as ‘Syntax Charts’, where graphs are used to convey the content of a language. The standard symbolic way of defining the syntax of a programming language, however, is to use a *grammar*, typically the Extended Backus Naur Form, known as EBNF. The EBNF gives us a general notation for specifying languages, and therefore is sometimes called a ‘meta-language’ (meaning ‘a language which is used to describe another language’). It should be familiar even to novice programmers as it is used in many introductory books on computer languages. In fact, since its introduction in the 60’s, it has enjoyed widespread use within Computer Science for a number of reasons which we shall explore shortly.

A fragment of the language definition of Pascal using EBNF is:

```
Program → ‘PROGRAM’ Declarative_part Statement_part ‘.’

Statement_part → ‘BEGIN’ Statement {Statement} ‘END’
```
Symbols such as ‘→’, ‘[’, ‘]’, ‘{ ’ and ‘ }’ are part of the EBNF specification language itself, while letters quoted are those that appear in an actual program, and words in italics stand for syntactic structures which are defined elsewhere in the specification. The fragment consists of three rules, each rule having the same meaning as its corresponding Syntax Chart in Figure 1.1. The first rule states that a program must begin with the word ‘PROGRAM’ and end with a full stop, and whatever comes in between is specified by rules starting with ‘Declarative_part’ and ‘Statement_part’. The other two rules therefore follow on, and the detail of the correct internal structure of a Pascal program emerges.

One uses the EBNF to specify language syntax in a generative fashion. Every syntactically correct program in the language being defined can be generated using the rules, starting at a special word (here ‘Program’). We can use the rules in a precise manner to re-write the special symbol into a full program; hence

Program

rewrites by the first rule to

‘PROGRAM’ Declarative_part Statement_part ‘.’

which re-writes by the second rule to

‘PROGRAM’ Declarative_part ‘BEGIN’ Statement {Statement} ‘END’

and so on until an actual program. In this manner a language definition written in EBNF specifies precisely and unambiguously every legal element of the language. EBNF is in fact a formal specification language.

Exercises 1.1

1. Look for syntax definitions of Programming, Data Base and Operating System languages in books and manuals which train the reader how to use those languages. What sort of convention is used to give language syntax definitions? How precise are these definitions?

2. EBNF may provide us with a notation for writing good language specifications, but it does not guarantee it. For example, we may legally write the rules:

\[\text{bill} \rightarrow \text{ben} \]
\[\text{ben} \rightarrow \text{bill} \]

Start with the word \text{bill}:

\text{bill}

this re-writes to

\text{ben}
Program

-->-| PROGRAM |-->-(Declarative_part)--->-(Statement_part)-->-| . |-->-

 v
Statement_part
 ^

-->-| BEGIN |-->-(Statement)--->| END |----->

-------------------<-------------------
 v
 ^

-->-| CONST |-->-(Constant_definition)--->|

-------------------<-------------------

-------------------<-------------------
 v
Declarative_part

-------------------<-------------------

-------------------<-------------------

-->-| VAR |-->-(Variable_declaration)-->

Figure 1.1: Syntax Charts corresponding to Pascal syntax rules
by the first rule, and *ben* rewrites to...

bill

by the second. This re-writes to

ben

and so on. Since there are no other rules with which to re-write *bill* or *ben*, we cannot
avoid generating a never ending series of re-writes. This may be easy to spot in our
contrived example, but in the midst of hundreds of rules, non-terminating re-write loops
may be more difficult to spot. Can you think of any other rules or rule forms in an EBNF
definition that may be pointless or superfluous?

1.2 What is a Software Specification?

A general dictionary definition of specification would run something like:

“A specification is a detail of design or materials for work to be undertaken”

For example, in the field of Engineering this might be a set of Technical Drawings,
complete with dimensions, tolerances, parts lists and so on. In Britain this type of
specification would have to be produced to the *British Standard BS308*.

As an exercise, you might like to form your own opinion before reading on as to what
others have defined a software specification to be. Here then are some of the textbook
definitions that have been given in the past:

1. A specification describes **WHAT** a program does, a design describes **HOW** the pro-
 gram does it, and documentation describes **WHY** it does it.

2. A specification is a document which forms a contract between the customer and the
designer.

3. Specification is the second phase in the ‘staged’ model of software development,
 which consists of: Requirements; Specification; Design; Implementation; Testing;
 Maintenance.

4. A specification is a document by which we can judge the correctness of an imple-
 mentation.

All these are consistent views of the nature of a specification. Read in isolation, they
are simplistic, and to attempt a better answer we must provide some background to the
question ‘What is a Software Specification?’.

In the context of software engineering, there are several acknowledged phases which
developers may pass through on route to a final, fully operational implementation, as
suggested by the third answer above. The *feasibility* stage, in fact, is usually the first,
in which the question being raised is ‘does a problem admit a computationally feasible
solution?’, or more specifically ‘does a problem allow a computationally feasible solution
within the time, money, equipment and any other resource constraints that may be present?'.

Assuming a computational solution is feasible, one has to capture the requirements of the solution. This is a bit like restating the problem, but at this stage it is probably phrased in a language which is problem oriented, and one which the ‘customers’ can understand. If the customers are part of a business enterprise then the requirement phase may involve both a capture of the current system (which could be a payroll, accounting, or bookings system for example) as well as a statement of the new system’s requirements. If the customers are the software developers themselves, as is often the case in technical or system software, an explicit requirement phase might not even occur.

The next step, provided the requirements are agreed upon, is to attempt to construct a system model which satisfies these requirements. In the case of a commercial system, the system model may then be an evolution of the old system. The fundamental change here is from a form which is assertive (what you want) to one which is constructive (how you will get it). The problem, initially expressed as a set of requirements, is turned into a solution in the form of a system model. The first model will be necessarily abstract, and will carry through many of the requirements as properties and constraints on the model. Nevertheless, it will embody some commitments to structuring of the final implementation, and include some computational concepts (such as input/output and data flow). In other words, what we have is a top level design.

So what has happened to the Specification? Have we missed out a stage? The answer is that specification is not really a particular stage in software development; eliciting requirements and transforming these into a design may involve ‘specification’ at various stages. Some staged models of software development do include the phases ‘Requirements Specification’ and ‘Design Specification’ to emphasis this point. The requirements refer to needs, the design to models that should satisfy the needs - a specification can be a precise statement of the needs, or even of the model to be constructed to fulfil them.

In this text you may sometimes find the word ‘definition’ used interchangeably with specification. This is not surprising, since a ‘definition’ is something which is supposed to be precise and complete, two of the qualities we desire for software specifications. Also, there must be must be something whole and integrated about a specification - it must be more that just a piecemeal re-statement of the requirements. In essence, it should form a ‘theory’ of which designs are possible models. It should also have a major characteristic of a good theory - one should be able to use it to predict the final system’s behaviour. This means that the specification should pin things down that hitherto had been left open, and should throw up incompletenesses in the requirements.

Our discussion has lead to an answer, which, it must be said, is more an ideal than a definition:

A specification is a precise, unambiguous and complete statement of the requirements of a system (or program or process), written in such a way that it can be used to predict how the system will behave.
Exercises for discussion

1. In section 1.1 we asserted that EBNF was a specification language, but an EBNF specification defines a language, not a system. Discuss the connection between the specification of a program and of a language (hint: consider the set of inputs to a program as making up a language).

2. Consider the following documents. Discuss whether they fit any or all of the definitions of specification given above (you will have to generalise the definitions to cope with non-software domains). If they do, say what they could be specifications of:
 a. your waist and inside leg measurements;
 b. a cooking recipe;
 c. a programming coursework description;
 d. the dimensions, weight, power, top speed and acceleration of a new car;
 e. a piece of pseudo-code for a program.
 f. a body of rules stating the separation standards of a collection of aircraft that are flying over the Atlantic at any point in time;

3. Discuss whether any/all the ‘definitions’ of specification given are precise and complete!

1.3 What is a Formal Specification?

We asserted at the end of section 1.1 that EBNF was a Formal Specification Language (FSL). What makes EBNF a good FSL (for specifying programming language syntax) is that it helps us write specifications of language syntax which satisfy certain criteria, such as precision. In the absence of any other rules starting with ‘Program’, the EBNF fragment in section 1.1 states precisely that any program conforming to it must start with the letters ‘PROGRAM’ and end with a full stop, exactly what we expect of every Pascal program.

EBNF also satisfies other criteria that we look for in an FSL. It is:

- unambiguous: a definition can be read in only one way; a decision as to whether a phrase is correct syntax is not open to different interpretations.
- standard: the notation is generally acceptable and widely used;
- implementation independent: the definition is independent of any program that embodies it;
- formally manipulatable: the definition can be reasoned with using precise manipulations. EBNF is based on the idea of ‘re-write’ rules which form a mathematical system;
• well founded: There is a whole area of theory on which grammars are based (recall
EBNF is a form of grammar). Also, various types of grammar have a strong
 correspondence with abstract computing machines.

Other qualities of a syntax specification that EBNF encourages are as follows (note that
EBNF itself does not guarantee these qualities):

• abstract: the notation encourages a user to write definitions which are concise, in
other words they include the minimum amount of detail to say exactly what is in
a target language, and nothing more.

• structured: the definition can be built up compositely, and the structure of the
definition can be used to reflect the meaning of the language syntax being defined;

These properties are all necessary in an FSL, but there are more. The reason EBNF
cannot be called a general FSL is that it is not an expressive enough to specify any
sequential algorithm. In fact, EBNF cannot even capture the full syntax definitions
of most programming languages: it cannot completely capture the context sensitive
parts of the Pascal language, such as the restriction that any variable name used in
an expression must have been previously defined. Nonetheless, it is still useful for the
particular application of language syntax definition.

The two styles of formal specification language used in this book are general: they can
be used to specify arbitrary, sequential computer programs, not just language syntax.
Hence an additional property we require of an FSL is as follows:

• it must be expressive enough to be able to specify any piece of (sequential) software.

Finally, EBNF does not highlight that we require the property of consistency in speci-
fications. This is because it only allows a user to say what is correct language syntax:
one cannot use EBNF to say what is not correct syntax. A specification is inconsistent
if two parts of it are contradictory with each other. Naturally, we want to avoid writing
specifications which are inconsistent, but in a large, realistic application, this might not
be easy.

Through our analysis of what has made EBNF a good FSL, we are now in a position to
build on our earlier definition of ‘specification’, by summarising the particular properties
of an FSL:

The characteristics of an FSL are that it is expressive enough for general computation,
is well founded in mathematics, and encourages the development of precise, predictive,
well structured, self consistent and complete specifications.

An Apparent Disadvantage of FSLs

We have not yet exhausted our list of desirable qualities of an FSL. There is one quality
of a specification language on which all FSLs do not seem to score too well, and the
reason that there are graphical forms of EBNF such as Syntax Charts, provides a clue to the nature of this.

Specifications should provide a communication medium between the developers, and to the customers and ‘end users’ of the proposed system. If the specification is to be viewed as some sort of contract, then the customers and end users will need to perform validation on it.

Unfortunately, FSLs tend to be highly mathematical, and here lies the problem. There are approaches to overcome this, however:

- The specification could be accompanied by enough natural language description that one could gain an understanding of it by simply reading the text.

- The specification could be transformed to a ‘validation form’ that is easily understandable (as Syntax Charts could be used as a ‘validation form’ for EBNF). This transformation should be preferably automatic, to minimise the possibility of error introduction.

- The specification could be animated by transforming it to a working prototype. Again, the transformation should be preferably automatic for the reason given above.

The first approach shall be used in this book, although in chapters 7 and 13 we explore the third alternative.

1.4 The Scope of this Book

This book covers only a certain aspect of specification in Software Engineering, roughly summed up as the ‘functional specification of sequential software’. Other entities that a specification may have to address are:

- hardware - what computers are required;

- performance - what size memory is required and what kind of processing speed.

Both these are beyond the scope of this book, as is the specification of concurrent (rather than sequential) processes.

Also, this book is not meant as a training manual or handbook in one FSL or another (and this is one reason why we do not include EBNF descriptions of the FSLs we use!). Indeed, the two languages in which we write specifications are not exhaustively detailed. Parts of these languages that were not needed for our purposes were left out.

On the other hand, the book is meant to introduce the reader to the important concepts in Formal Specification, to give a feel for the whole area, and to provide some basic skills in specification construction. To this end, we have included
• FSLs from two differing specification styles: the specification language used in the first half of the book (VDM) is of the *model-based* style, and the language used in the second half of the book is of the *algebraic* style. This should give the reader a broad view of the subject.

• interesting case studies, particularly the *neural network* and *automated planner* case studies of chapter 14 and 6 respectively.

1.5 Summary

Ideally, a formal specification should be a precise, consistent, unambiguous, complete, and implementation independent statement. One should be able to reason about its properties and predict the behaviour of the system it specifies. It should be written in a Formal Specification Language which supports these properties, is mathematically well founded and provides syntactic structures (e.g. functions, modules) on which we can build up or decompose a complex specification.

EBNF was seen as a successful formal specification language, although its use is limited to language syntax definition.
Chapter 2

Mathematical Structures for Formal Specification

2.1 Introduction

In this chapter, we provide a brief review of some standard results from the theory of sets, mappings and relations and look at the concept of binary operations. This chapter will furnish the necessary mathematical framework for the formal approaches to specification which are to be examined in this book. The formal concepts are explained with the help of a number of examples from applications in software engineering. This chapter can be skipped by readers familiar with sets, functions and relations. To start, we give a brief introduction to sets and mappings.

2.2 Sets

A set is any collection of objects and each object in the collection is called an element of the set. We write $x \in X$ to indicate that x is an element of the set X while the notation $x \notin X$ means that x is not an element of the set X.

2.2.1 Terminology

It is customary to reserve certain symbols for the frequently occurring sets:

\mathbb{N} denotes the set of natural numbers $0, 1, 2, 3, \ldots$ so that $5 \in \mathbb{N}$ but $-1 \notin \mathbb{N}$. Note that we follow the usual practice in computer science of including the value 0 in the set of natural numbers, unlike mathematics where the set of natural numbers describes the set of positive integers $1, 2, 3, \ldots$.

\mathbb{Z} denotes the set of all integers, $\ldots, -2, -1, 0, 1, 2, 3, \ldots$ (Z comes from the German Zahl meaning number).
 \(\mathbb{Q} \) denotes the set of all rational numbers, that is fractions of the form \(\frac{m}{n} \) where \(m \in \mathbb{Z} \), \(n \in \mathbb{N} \) and \(n \neq 0 \). (\(\mathbb{Q} \) stands for quotient). Examples of rational numbers are \(\frac{1}{3}, \frac{5}{2}, -\frac{3}{8} \).

\(\mathbb{R} \) denotes the set of all real numbers such as \(\sqrt{2}, -12.341, 0.05 \).

\(\mathbb{B} \) denotes the set of Boolean values and consists of the two elements true and false.

Sets can be specified by listing their elements explicitly and enclosing them within braces (curly brackets). For example, we can write the Boolean set \(\mathbb{B} \) as

\[\mathbb{B} = \{ \text{true} \ , \ \text{false} \} \]

A set can also be specified implicitly by means of some common characteristic property \(P \) of its elements. We write

\[X = \{ \ x \mid x \ \text{has property} \ P \ \} \]

for the set \(X \) of all elements \(x \) having the property \(P \). As an example, the set \(X \) of values \(x \) such that \(x \) is a natural number which is greater than or equal to 4 and less than or equal to 7 is written

\[X = \{ x \mid x \in \mathbb{N} \ \text{and} \ 4 \leq x \leq 7 \} \]

The vertical bar \(| \) in such an implicit definition is read as “such that” or “where”. The semicolon \(; \) is also used for this purpose but since the semicolon is used in VDM with a different meaning, we will use the vertical bar symbol “|”.

The set \(\{ x \in \mathbb{R} \mid 2x^2-5x+2 = 0 \} \) describes the set of solutions of the quadratic equation \(2x^2-5x+2 = 0 \), which produces the set \(\{0.5, 2\} \), whereas the set \(\{ x \in \mathbb{N} \mid 2x^2-5x+2 = 0 \} \) is the singleton set \(\{2\} \) (since the root 0.5 is not a natural number).

2.2.2 Subsets

Let \(A \) and \(B \) denote arbitrary sets. If each element of \(A \) is also an element of \(B \), then \(A \) is called a subset of \(B \) and we write \(A \subseteq B \) or equivalently, \(\forall x \in A : x \in B \). Thus

\[\mathbb{N} \subseteq \mathbb{Z} \ ; \ \mathbb{Z} \subseteq \mathbb{Q} \ ; \ \mathbb{Q} \subseteq \mathbb{R} \]

If \(A = \{0, 1, 3, 4\}, B = \{3, 4\} \), then all of the following statements are all true

\[\{3\} \subseteq A \ ; \ \{3\} \subseteq B \ ; \ B \subseteq A \ ; \ A \subseteq A \ ; \ B \subseteq B \]

Note that for any set \(A \), \(A \subseteq A \) is true. It should be noted that the symbol “\(\subset \)” is sometimes used to denote the subset although we will use \(\subseteq \) to denote a proper subset. This is explained further below in section 2.2.6.
2.2.3 Equality

If \(A \subseteq B \) and \(B \subseteq A \), then \(A \) and \(B \) are said to be equal and we write \(A = B \). In other words two sets \(A \) and \(B \) are equal if every element of \(A \) is an element of \(B \) and also if every element of \(B \) is an element of \(A \). Thus two sets are equal if they consist of the same elements. For example if \(A = \{0, 2, 3, 8\} \) and \(B = \{3, 2, 8, 0\} \) then \(A = B \). Note that duplicate elements are not allowed and that the order in which the elements is given is unimportant.

Given the set \(A \) where

\[
A = \{x \mid x \in \mathbb{N}, x \text{ is odd and } x^2 < 10\}
\]

and the set \(B \) where

\[
B = \{t \mid t \in \mathbb{N} \text{ and } 3 \text{ is exactly divisible by } t \}
\]

then \(A = B = \{1, 3\} \).

2.2.4 Intersection

Let \(A \) and \(B \) denote sets, then the intersection of \(A \) and \(B \), written \(A \cap B \), is the set of those elements which belong to both \(A \) and \(B \). Hence

\[
A \cap B = \{x \mid x \in A \text{ and } x \in B\}
\]

For example, if \(A = \{1, 2, 4, 5, 10, 12\} \) and \(B = \{2, 5, 7, 11, 12\} \), then

\[
A \cap B = \{2, 5, 12\}
\]

If \(A \) is the collection of positive integers less than 50 which are divisible by 6 and \(B \) is the collection of positive integers less than 60 which are divisible by 8, then \(A \cap B = \{24, 48\} \), that is the set of integers less than 50 which are divisible both by 6 and by 8.

2.2.5 Union

Let \(A \) and \(B \) denote sets, then the union of \(A \) and \(B \), written \(A \cup B \) is the set of elements which belong to \(A \) or to \(B \) or to both. Hence

\[
A \cup B = \{x \mid \text{either } x \in A \text{ or } x \in B\}
\]

An immediate consequence of this definition for set union is that for any set \(S \), then \(S \cup S = S \). Also if \(A \subseteq B \), then \(A \cup B = B \). As an example, if \(A \) and \(B \) are as defined in the example above then
As another example, if \(S = \{ a, b, d, m \} \) and \(T = \{ b, g, k, m, s \} \), then

\[
S \cup T = \{ a, b, d, g, k, m, s \}
\]

2.2.6 Null or Empty Set

The empty set, or null set denoted by \(\emptyset \) or by \(\{ \} \) is the set which contains no elements. For example, \(\{ x \mid x \in \mathbb{N} \text{ and } 2x = 1 \} = \emptyset \). As a further example, if \(A = \{1, 2, 4\} \) and \(B = \{3, 5, 9, 10\} \) then \(A \cap B = \emptyset \) (\(A \) and \(B \) have no elements in common).

Note that for any given set \(A \), then \(\emptyset \subseteq A \), that is the empty set is a subset of any set \(A \). Furthermore, if \(A \subseteq B \), \(A \neq \emptyset \) and \(A \neq B \), then \(A \) is called a proper subset of \(B \). It is important to remember that we use “\(\subset \)” to denote a proper subset and “\(\subseteq \)” for the more general subset relation.

A word of caution here – do not confuse the empty set \(\emptyset \) with the set \(\{0\} \) which denotes the non-empty set consisting of the single element zero.

2.2.7 Disjoint Sets

The sets \(A \) and \(B \) are disjoint if they have no elements in common, that is \(A \cap B = \emptyset \). For example, if \(A = \{-3, -1, 1, 3, 5\} \) and \(B = \{-2, 0, 2, 4\} \), then \(A \cap B = \emptyset \).

2.2.8 Cardinality and Finite Sets

A set is a finite set if it contains a finite number of elements. A set which is not finite is called an infinite set. \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \) are examples of infinite sets whereas \(\mathbb{B} \) is finite.

Let \(A \) be a finite set, then the number of distinct elements of \(A \) is called the cardinality of \(A \) and is denoted by \(|A| \) or \(\text{card}(A) \). The cardinality of \(\mathbb{B} = \{ \text{true}, \text{false} \} \) is \(2 \) while the cardinality of \(\{2, 2, 4, 6, 6\} \) is \(3 \). Note that \(|\emptyset| = 0 \) and \(|\{0\}| = 1 \).

2.2.9 Power Set

Given a set \(A \), then the power set of \(A \) is the set of all subsets of \(A \) including the empty set and the set \(A \) itself. It is denoted by \(\mathcal{P}(A) \). If \(A \) has cardinality \(n \), then the power set will contain \(2^n \) elements. For example, if \(A = \{1, 2, 3\} \) then the power set derived from \(A \) is the set

\[
\mathcal{P}(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}
\]
2.2.10 Set Difference

Let A and B denote sets, then the difference of A and B, written $A-B$ is the set of those elements which belong to A but which do not belong to B. Hence

$$A-B = \{x \mid x \in A \text{ and } x \notin B\}$$

so that if $A = \{0, 1, 2, 4, 6, 9, 10\}$ and $B = \{1, 4, 8, 9, 12\}$, then $A-B = \{0, 2, 6, 10\}$ whereas $B-A = \{8, 12\}$.

2.2.11 Associativity and Commutativity

It can be shown that for any sets A, B, C,

1. $A \cup (B \cup C) = (A \cup B) \cup C$
2. $A \cup B = B \cup A$

Result (1) expresses the fact that the union operation "∪" is associative and so enables result (1) to be written as $A \cup B \cup C$ without ambiguity, while result (2) states that the union operation is commutative. It can be shown that the operation of set intersection "∩" is also both associative and commutative.

Not all set operations are associative and/or commutative. In the case of the set difference operation, as the example demonstrates, the difference operation is not commutative, that is $A-B \neq B-A$. It is also easily verified that the difference operation is not associative either, that is $A-(B-C) \neq (A-B)-C$.

These concepts of associativity and commutativity are of fundamental importance in mathematics. The familiar operations of addition and multiplication over the real numbers are both associative and commutative.

2.3 Cartesian Product and Tuples

Let X and Y denote sets, then the set of all ordered pairs (x, y) with $x \in X$, $y \in Y$ is called the cartesian product of X and Y and is written $X \times Y$. The cartesian product $X \times X$ is often denoted by X^2. This definition can be extended: if X_1, X_2, \ldots, X_n are sets, then the set of all n-tuples (x_1, x_2, \ldots, x_n) where $x_1 \in X_1$, $x_2 \in X_2$, \ldots, $x_n \in X_n$ is the cartesian product of X_1, X_2, \ldots, X_n and is written $X_1 \times X_2 \times \ldots \times X_n$.

As an example, consider the cartesian product of the set of natural numbers and the set of Boolean values. The cartesian product is then the set of all ordered pairs of the form (n, b) where $n \in {\bf N}$ and $b \in {\bf B}$ and is written $\bf N \times \bf B$. Typical members of $\bf N \times \bf B$ include $(3, true) ; (5, true) ; (9, false) ; (3, false)$.

The concept of a cartesian product may be more clearly understood by considering the following situation. Suppose a young child is given a list of natural numbers, e.g.
type
 natural = 0 .. maxint; (* largest integer value the machine can hold *)

 function is_correct_pair(n : natural; b : boolean) : boolean;
 begin
 is_correct_pair := (odd(n) = b)
 end; (* is_correct_pair *)

(* main program fragment *)

read(n, b);(* assuming an implementation which reads boolean variables ! *)
if is_correct_pair(n, b) then
 writeln('Your answer is correct')
else
 writeln('Your answer is wrong!')

Figure 2.1: Pascal program for the cartesian product

3, 5, 9, 8, 2, ... and has to state whether or not they are odd. Suppose further that the child
is required to submit the answers at a computer terminal by typing in successive natural
number, boolean value pairs, for example “3 true”; “5 true”; “3 false”; “2 true”; ... and that after each pair is entered, the system responds with an appropriate message :
“Your answer is correct” or “Your answer is wrong!”. A Boolean-valued Pascal
function is_correct_pair and its use in a program which will accomplish this task is
shown in Fig. 2.1.

The built-in Boolean function odd(n) returns true if n is odd and false if n is even. The
formal parameter list n : natural; b : boolean in the function declaration states
that the function will accept, as valid input, any ordered pair whose first element is a
natural number and whose second element is a boolean value. The set of all such ordered
pairs, which we express mathematically as N × B is therefore simply the collection
of all valid input tuples for the function and delineates precisely the set of all syntactically
legal input value pairs to the function is_correct_pair.

2.4 Mappings

Two sets may be related to each other in a variety of ways. One important type of
relation is the mapping of one set to another.

To introduce this idea, consider the set U of all authorised users of a main-frame machine.
User u ∈ U has a user-number which we suppose is a positive integer which we can denote
by a(u). For instance if John Smith is an authorised user (and so is a member of the set
U) and has user-number 2136, then we can write a(John Smith) = 2136. We observe
that, in general, each element u ∈ U will give rise to a specific and unique element
a(u) ∈ N. This relationship is an instance of a mapping of U to N, where in this
example, a is the user-number mapping. Formally, we use the notation

a : U → N
to mean that \(a \) is a mapping (or map) of \(U \) to \(N \). The above notation also defines a
signature for the mapping.

The application of functions and mappings is one of the most commonly used techniques
in formal specification methodologies and indeed, the concept of mappings plays a key
role in computer science with wide-ranging applications. One way to think of a mapping
\(f \) is to treat it as a function which takes an input and transforms this input into an
output, so that symbolically

\[
f(\text{input}) = \text{output}
\]

In this context, a Pascal compiler can be thought of as a function which takes a high-level
source program as input and transforms it into the corresponding object program (the
output). One essential characteristic of this (and any) mapping is the uniqueness of the
output (result)!

On a more concrete level, use of finite maps such as finite sets of \((\text{index}, \text{value})\) or
\((\text{key}, \text{value})\) pairs underlies the implementation of such data structures as arrays, hash-
tables, keyed files and colour look-up tables. Mappings also play a crucial role in operating
systems, for example dynamic address translation mechanisms need to maintain address
translation maps illustrating which virtual storage locations are currently in real storage
and exactly where they are.

2.4.1 Relations and Mappings

Let \(X \) and \(Y \) denote sets, then a relation between \(X \) and \(Y \) (or a relation from \(X \) into
\(Y \)) is any subset \(S \) of \(X \times Y \) with \(x \in X \) and \(y \in Y \). Hence a relation between \(X \) and
\(Y \) is a collection \(S \) of tuples (ordered pairs) \((x, y)\). The notion of a mapping involves
relations of a special type.

A mapping \(a : X \to Y \) from a set \(X \) into a set \(Y \) is a relation from \(X \) into \(Y \) such
that each element of the first set \(X \) is related to exactly one element of the second set
\(Y \). We sometimes denote the element \(y \in Y \) by \(y = a(x) \). The terms function and
transformation are often used as synonyms for mapping while the term map is widely
used in computer science to describe a function between finite sets.

We can denote a mapping in one of several ways. For example, the mapping \(f : \mathbb{R} \to \mathbb{R} \)
defined by \(f(x) = 4x + 3 \) in familiar mathematical notation is an alternative but more
usual description of

\[
f = \{(x, \ 4x + 3) \mid x \in \mathbb{R}\}
\]

As another example, if \(A = \{1, \ 2, \ 3, \ 4\}, \quad B = \{a, \ b, \ c, \ d\} \) and \(m : A \to B \) is the
mapping defined by

\[
m(1) = a, \ m(2) = b, \ m(3) = c, \ m(4) = d
\]

then we can express the mapping \(m \) as either a set of tuples (ordered pairs)
\[m = \{(1, a), (2, b), (3, c), (4, d)\} \]

or as the set

\[m = \{1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d\} \]

2.4.2 Domain and Range

Let \(a : X \rightarrow Y \) be a mapping. The set \(X \) is called the domain of \(a \) and \(Y \) is called the range or codomain of \(a \).

2.4.3 Composition of Mappings

Let \(a : X \rightarrow Y \) and \(b : Y \rightarrow Z \) be mappings. The composition of \(a \) and \(b \), written \(b \circ a \) is a mapping from \(X \) into \(Z \). The mapping \(b \circ a : X \rightarrow Z \) is defined by

\[
(b \circ a)x = b(a(x))
\]

that is the mapping which results from first applying \(a \), and then applying \(b \). Note that the composition of \(a \) and \(b \) is defined only if the range of \(a \) is identical with the domain of \(b \), that is only if \(a \) and \(b \) are compatible.

As an example, suppose \(X = \{1, 2, 3\} \), \(Y = \{p, q, r\} \), \(Z = \{-5,-6,-7\} \) and the mappings \(a : X \rightarrow Y \) and \(b : Y \rightarrow Z \) are given by

\[
a = \{1 \mapsto p, \ 2 \mapsto q, \ 3 \mapsto r\}
\]

\[
b = \{p \mapsto -5, \ q \mapsto -6, \ r \mapsto -7\}
\]

then the composite mapping \(b \circ a : X \rightarrow Z \) is given by

\[
b \circ a : X \rightarrow Z = \{1 \mapsto -5, \ 2 \mapsto -6, \ 3 \mapsto -7\}
\]

2.4.4 Mappings and PASCAL

The ideas of domain, range and cartesian product should be familiar to the Pascal programmer in the context of function subprograms. For example, the header for a Pascal function to find the average of two real numbers

\[
\text{FUNCTION} \ \text{average(number1,number2 : REAL) : REAL;}
\]

describes a function with domain \(\mathbb{R} \times \mathbb{R} \) and range \(\mathbb{R} \), which we can express as

\[
\text{average} : \ \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}
\]
2.5 Types of Mapping (Function)

Mappings can be classified into a number of different types.

2.5.1 Injective

The mapping \(a : X \rightarrow Y \) is called \textit{injective} or \textit{one-one} if for each \(y \in Y \) there exists at most one \(x \in X \) such that \(a(x) = y \). (Note that no such \(x \) may exist). Another way of saying that \(a \) is injective is \(a(x) = a(x') \) implies \(x = x' \) where \(x, x' \in X \). A graphical representation of an injective mapping is shown in Fig. 2.2.

2.5.2 Surjective

The mapping \(a : X \rightarrow Y \) is called \textit{surjective} or \textit{onto} if for each \(y \in Y \), there exists at least one \(x \in X \) such that \(a(x) = y \). This type of mapping is illustrated in Fig. 2.3.

2.5.3 Bijective

A mapping which is both injective and surjective is called \textit{bijective} or \textit{one-to-one} and such a mapping is illustrated in Fig. 2.4. For such mappings, there is a one-to-one correspondence between the members of \(X \) and \(Y \).
Figure 2.3: A surjective mapping $a : X \rightarrow Y$ (not injective)

Figure 2.4: A bijective mapping $a : X \rightarrow Y$ (both injective and surjective)
2.5.4 Total and Partial Mappings

If a mapping \(a : X \rightarrow Y \) is defined for every \(x \in X \), then the mapping \(a \) is said to be total. The mappings illustrated in Figs. 2.2, 2.3 and 2.4 are all total (that is every element in \(X \) maps to an element in \(Y \)). If a mapping \(a \) is not defined for all \(x \in X \), then the mapping \(a \) is said to be partial. Expressed another way, we can say that a mapping \(a \) is partial if not all possible inputs have a defined output. An example of a partial mapping is illustrated below in Fig. 2.5. This mapping is partial since there are elements in \(X \) that are not mapped to a corresponding value in \(Y \).

We should emphasise again that we treat mappings as single-valued, that is for any mapping \(a : X \rightarrow Y \), we assume that for any \(x \in X \), there is at most one \(y \in Y \) such that \(y = a(x) \). This is an essential property for computer science applications since, for example, it would be most undesirable for an array element to have two distinct values.

Note also that the terminology is by no means standard in this area. In mathematics, functions (mappings) are by definition, total, that is for each \(x \in X \) there is a unique \(y \in Y \) such that \(x \rightarrow y \). In computer science applications however, the function (mapping) \(a \) from \(X \) to \(Y \) is usually defined by stating that \(a \) maps an element from \(X \) onto at most one element of \(Y \). Hence there is no necessity for every member of \(X \) to be mapped to a member of \(Y \).

2.5.5 Two Examples of Mappings

In order to capture the various concepts associated with mappings and to summarise, it will be helpful to look briefly at two examples of mappings.

Consider firstly a class of 25 students who sit an examination where marks are awarded in the range 0 to 100. If we denote the set of student names by \(S \) and the set of
possible marks by \(M \) (so that \(M \) will be the set \(\{ m \mid m \in \mathbb{N}, \ 0 \leq m \leq 100 \} \)), then the “examinations-results-list” constitutes a total mapping since every student has an examination mark and that mark is unique. We can write this mapping as

\[
\text{examination-results-list} : S \rightarrow M
\]

If every student whose name appears in \(S \) sat the examination, the mapping is total. Note that not every possible examination mark will appear on the results list because there are 101 possible marks but only 25 students. Hence for each mark \(m \in M \), it is not the case there is at least one student name \(s \in S \) who has attained that mark and so the mapping is not surjective. If it transpired that each of the 25 students achieved a different mark in the examination, then the mapping would be injective (since for each \(m \in M \), there is at most one \(s \in S \) with that mark).

Suppose now that there are 200 students taking the examination and that each of the 101 possible marks has been scored. In this situation, for each mark, there is at least one student who has achieved that mark and so now the mapping is surjective. The mapping is not injective however since at least one mark will have been scored by more two or more students. In the (unlikely) event of 101 students taking the examination and each scoring a different mark, the resulting mapping would be bijective (both injective and surjective) and we would have a one-to-one correspondence between the set of student names and the set of examination marks.

As a second example, consider a simple memory manager in an operating system. The heap contains memory available to applications programs and the space in the heap zone is subdivided into a number of contiguous blocks, say \(0 \ldots h_N \). Each block in the zone is either allocated to a user or is free. The storage manager is responsible for recording which blocks are currently owned by which user. If we denote the set of user-names by \(U \) and the set of blocks by \(H \) (so that \(H \) will be the set \(\{ m \mid m \in \mathbb{N}, \ 0 \leq m \leq h_N \} \)), then the storage manager constitutes a mapping from the set of block numbers to the set of users which we can express as

\[
\text{storage-manager} : H \rightarrow U
\]

Note that this constitutes a partial mapping in the situation where one or more blocks is not owned by any user. Also, since, in general, some users may not own any blocks while other users may own several, then the mapping will be neither surjective nor injective.

2.6 Binary Relations

We recall that the cartesian product of two sets \(A \times B \) is the set of all ordered pairs \((a, b)\) with \(a \in A \) and \(b \in B \). A subset of the cartesian product is called a relation or binary relation on the two sets.

It follows that if \(\mathcal{R} \) is a relation defined over the sets \(A \) and \(B \), then for any given ordered pair \((a, b) \in A \times B \), that ordered pair will or will not belong to \(\mathcal{R} \). If \((a, b)\) does belong to \(\mathcal{R} \), that is \((a, b) \in \mathcal{R} \), then we write \(a \mathcal{R} b \). This notation is used to stress the fact
that when \((a, b) \in \mathbb{R}\), a relationship exists between \(a\) and \(b\). If the sets \(A\) and \(B\) are the same, then a relation \(\mathcal{R}\) is a subset of \(A \times A\) and we say that \(\mathcal{R}\) is a relation on \(A\).

As an example of a relation, suppose that \(\text{John} \) knows PASCAL, \(\text{Lee} \) knows FORTRAN, \(\text{Barbara} \) knows C and \(\text{Pauline} \) knows COBOL. If we let \(P\) denote the set of people, so that

\[
P = \{\text{John, Lee, Pauline, Barbara}\}
\]

and \(D\) denote the set of computer languages

\[
D = \{\text{C, COBOL, FORTRAN, PASCAL}\}
\]

we can then express who knows which language in terms of a relation \(K\) where

\[
K = \{(\text{John, PASCAL}), (\text{Lee, FORTRAN}), (\text{Barbara, C}), (\text{Pauline, COBOL})\}
\]

In this example, \(p K d\) represents the relation “\(p\) \text{ knows computer language } d\).” We can also express this relation formally using set notation

\[
K = \{(p, d) \mid \text{person } p \text{ knows computer language } d \}
\]

Note that the cartesian product \(P \times D\) contains 16 ordered pairs and that \(K\) is a subset containing four of those pairs.

The following are all examples of relations on the set of integers \(\mathbb{Z}\).

1. \(\{(x, y) \mid x > y\}\)
2. \(\{(x, y) \mid y = x^2\}\)
3. \(\{(x, y) \mid 2x + 3y = 1\}\)

2.6.1 Equivalence Relation

Let \(A\) be a set, then a subset \(\mathcal{R}\) of \(A \times A\) is called an \textit{equivalence relation} on \(A\) if the following properties all hold

1. \((a, a) \in \mathcal{R} \quad a \in A\) - \textit{reflexive law}
2. if \((a, b) \in \mathcal{R}\) then \((b, a) \in \mathcal{R}\) - \textit{symmetric law}
3. if \((a, b) \in \mathcal{R}\) and \((b, c) \in \mathcal{R}\) then \((a, c) \in \mathcal{R}\) - \textit{transitive law}
The reflexive property states that all objects are equivalent to themselves while the symmetric property states that if \(a \) is equivalent to \(b \), then \(b \) is equivalent to \(a \). The transitive property states that objects that are equivalent to the same object are equivalent to one another.

These conditions can also be written, using a different notation

1. \(a \mathcal{R} a \quad \forall a \in A \)
2. \(a \mathcal{R} b \quad \Rightarrow \quad b \mathcal{R} a \quad \forall a, b \in A \)
3. \(a \mathcal{R} b \quad \text{and} \quad b \mathcal{R} c \quad \Rightarrow \quad a \mathcal{R} c \quad \forall a, b, c \in A \)

where the symbol \(\forall \) denotes the universal quantifier “for all”.

As an example, consider a high-level block structured programming language like Pascal, and let \(D \) denote the set of all declared identifiers in a Pascal program, then “is declared in the same block as” constitutes an equivalence relation, while “is declared in a block which encloses” is not an equivalence relation since property (2) does not hold in the second example.

As a further example, consider aliased variables. If two or more variables denote the same memory address, the variables are called aliases of one another. The ANSI version of Fortran allows aliased variables to be introduced by means of the aptly named non-executable \textsc{equivalence} statement which declares that two or more variables in a program refer to the same memory location. As an example, the statement

\[
\text{EQUVALENCE (T1,T2), (INDEX, JCOUNT, LOOPVAR)}
\]

instructs the compiler that the variables \(T1 \) and \(T2 \) share one memory location and that \(\text{INDEX} \), \(\text{JCOUNT} \) and \(\text{LOOPVAR} \) are to share another.

If \(A \) denotes the relation “is an alias of”, then \(A \) constitutes an equivalence relation over the set of all program variables \(V \). We can express the elements of the relation as

\[
T1 \mathcal{A} T2
\]

\[
\text{INDEX} \mathcal{A} \text{JCOUNT}, \quad \text{INDEX} \mathcal{A} \text{LOOPVAR}, \quad \text{JCOUNT} \mathcal{A} \text{LOOPVAR}
\]

We say that the set of all program variables \(V \) is \textit{partitioned} by the equivalence relation \(A \). The set of all variables in \(V \) which are aliases of each other constitute what is called an \textit{equivalence class} so that \(\{T1, T2\} \) and \(\{\text{INDEX}, \text{JCOUNT}, \text{LOOPVAR}\} \) constitute two separate equivalence classes. These ideas of partitioning and equivalence classes are formalised in the following definitions.

2.6.2 Partitions and Equivalence Classes

Let \(A \) denote a set. A \textit{partition} of \(A \) is a family of non-empty subsets of \(A \) such that each element of \(A \) belongs to exactly one member of the family. In other words, a partition
of a set A is a collection of non-overlapping, non-empty subsets of A whose union is the set A.

If \mathcal{R} is an equivalence relation on the set A, then the set of all elements in A equivalent to a given element x_0 is called an equivalence class

$$A_0 = \{ a \in A \mid a \cong x_0 \}$$

2.6.3 Partial Ordering

Another important type of ordering on a set A is a partial ordering. A relation \mathcal{R} on a set A is called a partial ordering or partial ordering relation if the following three properties all hold

1. $(a, a) \in \mathcal{R}$ – reflexive law
2. if $(a, b) \in \mathcal{R}$ and $(b, c) \in \mathcal{R}$ then $(a, c) \in \mathcal{R}$ – transitive law
3. if $(a, b) \in \mathcal{R}$ and $(b, a) \in \mathcal{R}$ then $a = b$ – anti-symmetric law

The reflexive and transitive properties are the same as those for an equivalence relation. However, a partial ordering is characterised by the anti-symmetric property (3) which says that whenever $a \mathcal{R} b$ and $b \mathcal{R} a$, then $a = b$.

Such a partial order is also referred to as a weak partial order. A weak partial order is characterised by the reflexivity property, that is the statement $a \mathcal{R} a$ is always true. On the other hand, a strong partial order, is characterised by the properties of irreflexivity and transitivity, that is

1. not $(a, a) \in \mathcal{R}$ – irreflexive property
2. if $(a, b) \in \mathcal{R}$ and $(b, c) \in \mathcal{R}$ then $(a, c) \in \mathcal{R}$ – transitive property

A set on which there is a partial ordering is called a partially ordered set or poset. Some examples should help to clarify these ideas.

2.6.4 Examples of Partially Ordered Sets

Consider firstly the set $A = \{1, 2, 3, 4\}$, then the relation \mathcal{R} on A defined by $a \mathcal{R} b$ if $a \leq b$ is a partial order. The cartesian product $A \times A$ contains 16 members and the above relation is specified by the subset

$$\{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

We can show that the relation \mathcal{R} is a partial ordering by proving that the properties (1), (2) and (3) above all hold.
For (1), we observe that for any \(a \in A \), then \(a \leq a \). For (2), we note that if \(a \leq b \) and \(b \leq c \), where \(a, b, c \in A \), it follows that \(a \leq c \). For (3), if \(a \leq b \) and \(b \leq a \), then these two inequalities can only be satisfied if \(a = b \). The three properties are satisfied so that the relation \(\mathcal{R} \) does indeed constitute a partial ordering on the set \(A \). In fact, the above relation \(\mathcal{R} \) will constitute a partial ordering on the entire set of integers \(\mathbb{Z} \).

As a second example, let \(A \) denote the set of courses offered by a college for a computer science degree. If we define the relation \(\mathcal{R} \) on \(A \) by \(a \mathcal{R} b \) if \(a \) and \(b \) are the same courses or if course \(a \) is a pre-requisite for course \(b \) (that is, course \(a \) must have been studied before course \(b \) is started), then the relation \(\mathcal{R} \) makes \(A \) into a partially ordered set.

Another example of a partial ordering which arises in the real world is the building of a new house in which there are certain tasks such as digging the foundations, laying the floor, which must be completed before other phases of the construction such as erecting walls and building the roof can be undertaken. If the set of tasks that must be undertaken in building a house is denoted by \(B \), we can define a relation \(\mathcal{R} \) on \(B \) by \(a \mathcal{R} b \) where \(a, b \in B \) if \(a, b \) denote the same task or if task \(a \) must be completed before the start of task \(b \). In this manner, we impose an order on the elements of \(B \) and so make it into a poset. Those with a knowledge of operational research will recognise this poset as a PERT network (the acronym PERT stands for “Project Evaluation and Review Technique”).

In general, if \(A \) is a set and the relation \(\mathcal{R} \) on \(A \) is a partial order (partial ordering relation), then the pair or tuple \((A, \mathcal{R})\) is called a partially ordered set or poset.

2.6.5 Total Ordering

A total ordering is a special type of partial ordering defined as follows. Suppose \((A, \mathcal{R})\) is a poset (that is \(A \) is a set and the relation \(\mathcal{R} \) on \(A \) is a partial ordering relation on \(A \)), then the set \(A \) is said to be totally ordered if for all \(a, b \in A \), either \(a \mathcal{R} b \) or \(b \mathcal{R} a \). In this situation, \(\mathcal{R} \) is said to be a total order.

Some further examples should help to consolidate these ideas. Suppose \(A \) is the set \(\{1, 2, 3, 4\} \) and that the relation \(\mathcal{R} \) on \(A \) is defined by \(a \mathcal{R} b \) by “\(a \) divides exactly into \(b \)”.

It follows that

\[
\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}
\]

is a partial order and \((A, \mathcal{R})\) is a poset. Note that this partial order is not a total order since, for example, when \(a = 2 \) and \(b = 3 \), neither 2 divides exactly into 3 or 3 divides exactly into 2 (that is neither \((2,3)\) or \((3,2)\) \(\in \mathcal{R} \)).

On the other hand, if the set \(A \) is as above and \(\mathcal{R} \) is defined by \(a \mathcal{R} b \) if \(a \leq b \), then the relation \(\mathcal{R} \) is a total order. The elements of \(\mathcal{R} \) from above are

\[
\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
\]

and we see that for all values \(a \) and \(b \in A \), either \(a \mathcal{R} b \) or \(b \mathcal{R} a \in \mathcal{R} \).
2.7 Binary Operations

Let S denote a non-empty set, then the mapping $m:S \times S \rightarrow S$ is called a binary operation on S. In other words, a binary operation is a rule which assigns to each ordered pair of elements of S, a unique element of S. In spite of the fact that a binary operation is a mapping, it is common practice to use symbols rather than letters to name them and the most commonly used symbol is \ast.

If \ast is a binary operation on a set S and $a, b \in S$ then there are three common ways of representing the image of the pair (a, b), namely:

1. $a \ast b$ (infix)
2. $ab\ast$ (postfix)
3. $\ast ab$ (prefix)

2.7.1 Unary Operations

Some operations, such as the negation of numbers or the logical not are unary operations, not binary operations. We can formally define a unary operation as a mapping $u:S \rightarrow S$, that is, it is a rule that assigns to each element of S a unique element of S.

2.7.2 Common Properties or Attributes of Operations

Let S denote any set and let \ast denote a binary operation on S, then there are a number of properties that a single binary operation may possess.

1. \ast is associative if $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a, b, c \in S$
2. \ast is commutative if $a \ast b = b \ast a$ for all $a, b \in S$
3. \ast has an identity if there exists an element $e \in S$ such that $a \ast e = e \ast a = a$ for all $a \in S$
4. \ast has the inverse property if for each $a \in S$ there exists an element $b \in S$ such that $a \ast b = b \ast a = e$. The element b is called the inverse of a.

2.7.3 Closure

If \ast is a binary operation on a non-empty set S and $T \subseteq S$, we say that T is closed under \ast (or relative to \ast) if $a, b \in T$ implies that $a \ast b \in T$. In other words, when you operate upon elements of T with the binary operation \ast, you cannot obtain any new elements that are outside of T.

A few simple examples should clarify this definition. Consider the binary operation of addition on the natural numbers \mathbb{N}, then we say that \mathbb{N} is closed under addition since
the sum of two natural numbers is itself a natural number. Similarly, \(\mathbb{N} \) is closed under multiplication. However, \(\mathbb{N} \) is not closed under subtraction since 1-2 is not a natural number. If we consider the operation of subtraction on the integers \(\mathbb{Z} \), then in this case, \(\mathbb{Z} \) is closed under subtraction.

2.8 Operation Types

It should be noted that in the definitions above, we have assumed that \(\ast \) is an *infix* binary operation, although the definitions could have been expressed in terms of *prefix* (*\(\ast ab \)*) or *postfix* (*\(ab\ast \)*) notation. Prefix *unary* operations include negation (*\(_ - \)*) and logical not (*\(_ \bar{_} \) *), while postfix unary operations include factorial (*\(_ ! \)*) or inverse (*\(_ ^{-1} \)*) and the underscore character _ denotes the position of the argument(s). Two other types are *outfix* such as the absolute value (*\(_ | _ \)*) and *distfix* (or *mistfix*) such as in the selection function if _ then _ else _.

2.9 Bags and Lists

There are two further discrete mathematical structures which complement the set and map structures already discussed, *bags* and *sequences (lists)*. All of these structures provide fundamental models in the constructive approach to specification.

2.9.1 Bags

Bags are un-ordered collections of data items and although like sets, the order of enumeration of the elements is unimportant, unlike sets, repeated elements are included in a bag, so that if \(B_1 = < 1, 2, 5, 10 >, B_2 = < 5, 10, 2, 1 >, B_3 = < 1, 1, 2, 5, 10 > \) then \(B_1 = B_2 \) but \(B_1 \neq B_3 \) and \(B_2 \neq B_3 \).

2.9.2 Lists

Often it is important to place objects in some sort of order, according to some property or they may be sorted in compliance with some key, for example. A *list* or *sequence* is used to describe such a collection of elements. Unlike a set, the elements of a list are totally ordered. The empty list, which contains no elements is usually denoted by [], while non-empty lists are characterised by having a *head* and a *tail*. For example, given the list \(L = [2, 3, 6, 6, 9, 10] \) whose elements belong to the natural numbers, then the head of \(L \) is the natural number 2 and the tail of \(L \) is the list \([3, 6, 6, 9, 10] \).

To conclude this chapter, we look at proving results using a method known as *mathematical induction*.

2.10 Mathematical Induction

A powerful proof technique, which will be used later in VDM (chapter 5) and in the algebraic approach to specification (chapter 12) is mathematical induction. Induction can be used to establish properties about natural numbers such as proving that the result of finding the sum of the first \(n \) natural numbers is \(n(n+1)/2 \).

The proof that some general result \(S_n \) holds for all natural numbers \(n \) is established first by showing that the result is true for some base case (say \(n = 1 \)). Then assuming \(S_n \) is true, if it can be shown that the truth of \(S_n \) implies the truth of \(S_{n+1} \) (that is \(S_n \Rightarrow S_{n+1} \)), then the proof that \(S_n \) holds is established. The inductive proof proceeds by observing that since \(S_1 \) is true (the base case), so is \(S_2 \); then since \(S_2 \) is true, so is \(S_3 \) and so on.

For the example above, we will use mathematical induction to show that the sum \(S_n \) of the first \(n \) natural numbers is equal to \(n(n+1)/2 \), that is

\[
1 + 2 + \cdots + (n-1) + n = \frac{n(n+1)}{2}
\]

The proof that \(S_n = n(n+1)/2 \) proceeds by first using the formula to deduce the sum of one term of the series. From the formula, the sum of one term is \(S_1 \) which evaluates to 1. This value is correct and so the base case is established.

Now assume that \(S_n \) is true and see what happens when we add the next term \(n + 1 \) to the series. The sum to \(n + 1 \) terms, is given by \(S_n + (n + 1) = n(n+1)/2 + (n + 1) \). This expression can be simplified to \((n + 1)(n + 2)/2 \). We can write this result as

\[
\frac{(n + 1)(n + 1)}{2}
\]

which is immediately seen to be the formula \(S_n \) with \(n \) replaced by \(n + 1 \), that is \(S_{n+1} \). Hence if \(S_n \) is true so is \(S_{n+1} \) and the truth of the assertion has been established through induction. A more detailed treatment of many of the concepts discussed in this chapter can be found in [Doerr and Levasseur 85] and [Wiitala 87].

2.11 Summary

- This chapter introduces much of the necessary mathematics used in the subsequent chapters.

- The discrete mathematical structures introduced include sets, bags, lists, tuples, the Cartesian product, mappings, relations and equivalence classes.

- Partial and total orderings over a set are discussed and the principle of proof by mathematical induction is introduced.

- These mathematical concepts are illustrated by using examples oriented towards software engineering applications.

Additional Problems – 2.
Problem 2.1

If \(A = \{c, o, m, p, u, t, i, n, g\} \) and \(B = \{c, o, m, p, i, l, e, r\} \) are sets of single letter symbols, find

(a) \(A \cup B \)
(b) \(A \cap B \)
(c) \(A-B \)
(d) \(B-A \)
(e) \(|A| \)
(f) \(|B| \)
(g) \((A-B) \cup (B-A) \)
(h) \((A-B) \cap (B-A) \)
(i) \((A-B)-(B-A) \)

Problem 2.2

Repeat exercise 2.1 if \(A = \{1, 2, 4, 9, 12, 18, 21\} \) and \(B = \{2, 3, 15, 18\} \). If, further, \(C = \{5, 6, 9\} \) verify that

(a) \((A \cup B) \cup C = A \cup (B \cup C) \)
(b) \((A \cap B) \cap C = A \cap (B \cap C) \)
(c) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)
(d) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)

Problem 2.3

If \(U = \{1,3,5,7,9,11,13\} \) what are the cardinalities of \(U \) and the power set \(P(U) \) ?

Problem 2.4

Let \(U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \), \(A = \{x \in U \mid x^2 \text{ is odd}\} \) and \(B = \{x \in U \mid x + 1 \text{ is a multiple of } 3\} \).

List the elements of the following sets:

(a) \(A \)
(b) \(B \)
(c) \(A \cap B \)
Problem 2.5

If \(A = \{\text{pascal, modula-2, basic, ada, c}\} \) and \(B = \{\text{unix, ms-dos, vms, cp/m}\} \), list the elements of the following sets

(a) \(A \times B \)
(b) \(B \times A \)
(c) \(A \times A \)
(d) \(B \times B \)

Problem 2.6

If \(A = \{1, 2, 3, 4, 5\} \) and \(B = \{1, 2, 3, 4\} \), list the elements of the following sets

(a) \(A \times A \)
(b) \(B \times B \)
(c) \(A \times B \)
(d) \(B \times A \)

Problem 2.7

If \(A = \{a, b, c\} \), find the power set \(\mathcal{P}(A) \) of \(A \). Hence find \(\mathcal{P}(A) \times \mathcal{P}(A) \) and determine its cardinality.

Problem 2.8

Let \(P \) denote the set of positive integers, that is the set \(\{1, 2, 3, 4, \ldots\} \). For each relation \(r \) defined over \(P \), determine which of the specified ordered pairs belongs to \(r \).

(a) \(x \ r \ y \) iff \(y = x \); \((1,1), (5,5), (3,2), (2,3), (6,6), (1,2) \)
(b) \(x \ r \ y \) iff \(x = y^2 \); \((1,1), (2,1), (4,2), (2,4), (9,4), (9,3) \)
(c) \(x \ r \ y \) iff \(y > x \); \((1,1), (1,2), (2,1), (2,2), (4,2), (1,8) \)
(d) \(x \ r \ y \) iff “\(y \) is divisible by \(x \) with no remainder”; \((1,1), (1,2), (2,1), (2,2), (6,3), (3,6) \)

where \(\text{iff} \) stands for “if and only if”.

Problem 2.9

Consider the two relations \(r \) and \(s \) defined over \(T \times T \) where \(T \) is the set \(\{1, 4, 7, 10\} \) and

\[x \ r \ y \iff y = x + 3 \]
List the ordered pairs (2-tuples) for each of the relations r and s.

Problem 2.10

Three lecturers $John$, Lee and Ann intend to teach a combined programming course in the languages Ada, Modula-2 and C. $John$ has experience of Ada, Lee has experience of Modula-2 and Ann has experience of all three languages.

(a) Let T denote the set of (three) lecturers, L the set of languages and let p denote the relation “has experience of the language”. Specify this relation as a set of ordered pairs.

(b) Two machines are available for the programming course: one has the software to support Modula-2 and Ada and the other supports C. Find a composite relation to describe which lecturer can use which machine for his/her part of the programming course.

Problem 2.11

Let $A = \{1, 2, 3, 4, 5\}$ and let r, s and t be relations defined over $A \times A$ where

\[
 r = \{(1,1), (1,2), (2,2), (2,3), (3,3), (3,4), (4,4), (4,5), (5,5), (5,1)\}
\]

\[
 s = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,3), (4,1), (4,2), (4,4), (5,5)\}
\]

\[
 t = \{(1,1), (1,2), (2,2), (3,2), (3,3), (4,4), (5,1), (5,2), (5,3), (5,4), (5,5)\}
\]

(a) which of these relations is an equivalence relation and list its equivalence classes?

(b) which of these relations is a partial ordering?

Problem 2.12

Investigate whether the following relations are equivalence relations and/or partial orderings over $S \times S$ where S where S is the set of students in a given class.

(a) $x r y$ iff student x and student y have the same overall coursework grade.

(b) $x r y$ iff student x is smaller in height than student y

Problem 2.13

Which of the following are injective (one-one), surjective (onto), or both (bijective)?

(a) $f_1 : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_1(x) = x^3 + x$

(b) $f_2 : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f_2(x) = 1-x$

(c) $f_3 : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f_3(m, n) = 2m + 3n$
(d) \(f_4 : \mathbb{N} \rightarrow \mathbb{N} \) defined by \(f_4(n) = n^2 + n \)

(c) \(f_5 : \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \) defined by \(f_5(n) = (n, n + 1) \)

Problem 2.14

Show that the even integers are closed under multiplication and addition whereas the odd integers are closed under multiplication but not closed under addition.

Problem 2.15

Show that the set of positive multiples of 3 is closed under both addition and multiplication.

Problem 2.16

Let \(M \) denote any set and let \(\ast \) be any operation on \(M \) which is associative and commutative. If \(a \) and \(b \) are elements of \(M \), prove that

\[
(a \ast b) \ast (a \ast b) = (a \ast a) \ast (b \ast b)
\]

Furthermore, if \(a \) and \(b \) are idempotent elements, that is \(a \ast a = a \) and \(b \ast b = b \), deduce that

\[
a \ast b \ast a \ast b = a \ast b
\]

Problem 2.17

Mappings can be combined with the \textit{overwrite} (or \textit{update}) operator \(\uparrow \). This operator takes two mappings as operands and produces a mapping as a result. Where a domain element appears in both mappings, the range element in the second operand has priority in the resultant mapping. If there is no duplication of domain elements, then mappings are simply combined to produce the result. For example, if

\[
m_1 = \{ A \mapsto 1, \ C \mapsto 3, \ D \mapsto 2, \ E \mapsto 5 \}\n\]

\[
m_2 = \{ B \mapsto 4, \ C \mapsto 5, \ E \mapsto 8 \}
\]

then

\[
m_1 \uparrow m_2 = \{ A \mapsto 1, \ B \mapsto 4, \ C \mapsto 5, \ D \mapsto 2, \ E \mapsto 8 \}
\]

\[
m_2 \uparrow m_1 = \{ A \mapsto 1, \ B \mapsto 4, \ C \mapsto 3, \ D \mapsto 2, \ E \mapsto 5 \}
\]

This idea of \textit{map overwrite} is often used in computer science, for example, if we have a table of \textit{user-name, password} entries such as

\[
\{ \text{Lee \mapsto “planner”, John \mapsto “syzygy”, Ann \mapsto “maths”} \}
\]

and John wants to update his password to “plasma”, then this is expressed by

\[
\{ \text{Lee \mapsto “planner”, John \mapsto “syzygy”, Ann \mapsto “maths”} \} \uparrow \{ \text{John \mapsto “plasma”} \}
\]

which produces the mapping
(Lee \mapsto “planner”, John \mapsto “plasma”, Ann \mapsto “maths”)

If

$$m_1 = \{z_1 \mapsto 2, \ z_2 \mapsto 4, \ z_3 \mapsto 6, \ z_4 \mapsto 8\}$$

and

$$m_2 = \{z_1 \mapsto 8, \ z_2 \mapsto 2, \ z_3 \mapsto 2, \ z_4 \mapsto 6\}$$

show that

(a) $m_1 \downarrow m_2 = m_2$

(b) $m_2 \downarrow m_1 = m_1$
Of the many books which cover concepts in discrete mathematics, two are particularly recommended. An added bonus is that both introduce propositional and predicate logic with a more comprehensive account of predicate logic being given in Stephen Wiitala’s book.

One additional book which is highly recommended and has the advantage that it includes an accessible introduction to algebras is

Chapter 3

Introduction to Model-based Specification using VDM

3.1 Introduction

To be able to write a formal specification we must first have a *formal specification language*, just as in writing a program we need to first choose a programming language. There are a variety of very different programming languages, and likewise, specification languages differ.

The specifications written in chapters 3 through to 7 will be written in a standard specification language called VDM-SL. The type of specification built in VDM-SL is called *Model-based or Constructive*. Advocates of this approach maintain that the requirements of a system are best captured by creating a system model, then defining how a typical state of the model changes under the effect of operations. This has lead to the approach also being termed *state-based*. In fact, the model-based approach to specification offers two distinct features:

- The means of creating an abstract system state using a collection of precisely defined data structures. These are discrete mathematical objects (all of which were introduced in chapter 2), complete with a set of laws governing their behaviour, founded on set theory.

- The means of specifying operations implicitly in terms of properties to be achieved, using pre- and post-conditions which are composed of logical formulae.

VDM-SL is the standard specification language for VDM, which is itself a *software development method* (VDM stands for Vienna Development Method, and SL stands for Specification Language). We use the specification language only, since this is the main topic of the book, but or brevity we will drop the "SL", and refer to the specification language simply as VDM. Over the years the specification notation has changed considerably, as can be witnessed by consulting Jones's publications in [Jones 79,86,90]. These books led the way to the now standard notation, used in [Jones 90], which we shall also
use in this book. VDM can be viewed as giving a framework for the construction of specifications, one that provides a very useful structure for the specifier to follow, implicitly suggesting a method for developing specifications. This framework will be presented in section 3.5, whereas in the first part of this chapter the reader will learn how to specify a problem using some simple logic, and familiar mathematical abstractions such as sets.

We will introduce the language of VDM as necessary, mainly through examples rather than formal definitions. Although more detailed examples will be developed in the following chapters, this book does not exhaustively cover the whole of the VDM language, and indeed some of the more advanced and controversial features are left out completely.

3.2 The Implicit Specification of Operations

We define an operation to be a process which is input with a pre-determined number of values, and outputs a single value\(^1\). These values are represented or held by parameters, and each parameter is given its own type which denotes the range of values it can hold. Note that this VDM definition of operation is a generalisation of the mathematical definition given in section 2.8.

The specification of an operation defines the relationship between its input and output values, without resorting to any algorithmic details. To prepare the reader to write specifications in VDM, we first consider some simple but concrete examples of operations specified by formalising conditions on their input and output parameters. The general form for writing operations is to start them with a heading, listing the operation's identifier, followed by its input and output parameters. On the lines following the heading, we write the pre-condition and the post-condition, summarised as follows:

\[
\text{operation-identifier(input parameters) output parameters} \\
\text{pre-condition} \\
\text{post-condition}
\]

Note that:

- The pre- and post-conditions are logical condition which can be evaluated to true or false after an operation's parameters have been supplied with values.

- Types for the parameters appear immediately after each parameter, in a similar fashion to parameter declarations in a Pascal procedure heading. One can think of a parameter's type as a kind of pre-condition, since an operation does not make sense if it is supplied with a value for a parameter which does not satisfy the type definition.

- Each VDM operation's identifier will be put in capital letters throughout this book.

\(^1\)A VDM operation may also access and change a system state, but we will delay discussion of this idea until later in the chapter.
operation, under a particular parameter binding (that is an assignment of values, of the
correct type, to parameters), the pre-condition must evaluate to true; for the procedure
to be a correct implementation under the same binding, the post-condition must evaluate
to true whenever the pre-condition is true and the procedure has been executed.

We will initially explore this specification method using simple operations with numeric
input and output parameters. Conditions will be restricted (for the time being) to logic
formulae containing only parameters, constants, primitive functions and logical connec-
tives. In the examples below, we denote parameters of type integer with the symbol Z,
and those of type natural number, with N as introduced in chapter 2.

3.2.1 Examples of Implicit Specifications

1. An operation that is not supplied as a built-in primitive in the standard Pascal
programming language is the exponent, and programmers must supply their own
implementation. The specification in the format introduced above is:

\[EXPONENT (x : Z, n : N) \rightarrow y : Z \]
pre \(n > 0 \)
post \(y = x^n \)

\[EXPONENT \] has two input parameters, \(x \) and \(n \), and one output parameter, \(y \).
The pre- and post-conditions are made up of the simple predicates ‘\(> \)’ and ‘\(= \)’ and
use is made of the familiar mathematical power function, assumed to be primitive
in our specification language.

2. The integer square root of a number \(x \) is defined as that number whose square is
less than or equal to \(x \), but when incremented and squared, is greater than \(x \). The
specification can be concisely written:

\[INT_SQR (x : N) \rightarrow z : N \]
pre \(x \geq 1 \)
post \((z^2 \leq x) \land (x < (z + 1)^2) \)

In the operation \(INT_SQR \), the pre-condition restricts input parameter \(x \)'s value
to be greater or equal to 1. The output value held by \(z \) is implicitly defined, in
that it is the value which makes the logical expression in the post-condition true.

3. Two functions which are primitive to Pascal, \(MOD \) and \(DIV \), can be implicitly
specified using similar specifications. Both take two arguments, \(x \) and \(y \); \(DIV \)
returns \(d \), the integer value of \(y/x \) (rounded down), while \(MOD \) returns \(m \), the
remainder. Here is the full specification of \(MOD \):

\[MOD (x, y : N) \rightarrow m : N \]
pre \((x > 0) \land (y > 0) \)
post \(\exists d \in Z \cdot (y = d \times x + m) \land (0 \leq m) \land (m < x) \)

These examples emphasise some important concepts:
• The post-conditions contain the *relationship* between input and output parameters. Later we will investigate more sophisticated post-conditions which refer data in an external system state as well as data held in parameters.

• Conditions are logical formulae, for example the post-condition in example 2 is a conjunction of two predicates. They contain primitive functions (for example +, -, power) and predicates (for example >, <, =), which are ‘built-in’ to VDM.

The output parameter in the operations (for example z in example 2) has its values prescribed implicitly, without any clue as to what algorithm will be used in an implementation. They are thus examples of *implicit* specifications, since the post-conditions do not have an algorithmic interpretation; put simply, this means we can’t automatically compute the output(s) from the post-condition, given a value for each input (not surprisingly since the post-condition must be a logical formulae). Suppressing these algorithmic details is considered a useful form of abstraction.

In fact in VDM these examples could have been specified *explicitly*, and such a specification takes the form of an executable function. Using an *explicit function definition* the output parameter’s value may be computed. We shall cover explicit function definitions later, in chapter 5.

3.2.2 The Logical Condition

Pre- and post-conditions, as well as other constructions we shall meet later, take the form of ‘logical conditions’ or ‘logical formulae’. Technically, they could also be described as ‘well-formed formulae in enriched first order logic’, but we will use the shorter name here. Given values for any parameters they contain, logical conditions will always evaluate to *true* or *false*. A logical condition which we want to evaluate to *true* is called an *assertion*.

The following logical connectives, negation and quantifiers are used:

- \land - meaning ‘and’
- \lor - meaning ‘or’
- \leftrightarrow - meaning ‘if and only if’
- \Rightarrow - meaning ‘implies’
- \forall - is a quantifier meaning ‘for all’
- \exists - is a quantifier meaning ‘there exists’
- \neg - meaning ‘it is not the case that’

In proofs we may also take the liberty of using the symbol ‘ \Rightarrow ’ to relate steps of the proof, as well as using it within the logical conditions. Also, VDM allows the striking through of some common predicates as a shorthand for negation (for instance, $x \neq y$ means $\neg(x = y)$).
To understand logical conditions one must be aware of all the syntax classes involved, and what symbols belong to each. A logical condition contains one or more predicates. Predicates are joined by logical connectives, possibly surrounded by quantifiers, and may contain functions, parameters, constants and quantified variables. In section 3.2.1, example 2, the symbols in the conditions can be categorised into syntax classes as follows:

logical connectives: \land

predicates: $\leq, <, \geq$

primitive functions: $+, squared$

constants: 1

parameters: x, z

The predicates, functions and constants present in conditions will obviously depend on the data type of the parameters - in the three examples above these types were \mathbf{N} or \mathbf{Z}.

Exercises 3.1

1. Write down the syntax class for each of the symbols in the pre and post-conditions of examples 1 and 3.

2. Specify the DIV procedure mentioned in example 3.

3. Using the pre- and post-condition format, try to formalise the specification of a procedure which outputs the maximum of three numbers

3.2.3 Reasoning with pre- and post-conditions

A prime motivation for formalising specifications is so that one can reason about them formally as well as informally. In section 3.2.1, example 2, for instance, it is not obvious that the integer square root, z, is actually unique - it may be possible that some positive integer x has more than one positive square root!

We can argue informally that this is not the case, or we can give a step by step proof, as follows: assume that given a value for input parameter x, there are two possible output values for z, called a and b, both satisfying the post-condition. To prove z’s value is unique, we will show that $a = b$ must be true. From the post-condition, after execution of INT_SQR, we have:

(1) ... $a^2 \leq x < (a + 1)^2$

and

(2) ... $b^2 \leq x < (b + 1)^2$

Now we can prove a and b must denote the same value as follows. Since a and b are named arbitrarily, we can start by assuming that a is greater than or equal to b:

(3) ... $b \leq a$
we can extract from (1):

(4) \(a^2 \leq x \)

and from (2) and (4):

(5) \(a^2 \leq x < (b + 1)^2 \)

from (5) and the properties of inequality, we have:

(6) \(a^2 < (b + 1)^2 \)

(7) \(\Rightarrow a < (b + 1) \)

(8) \(\Rightarrow a \leq b \)

Using (8) and (3) we have:

(9) \(a = b \)

Notice how properties of the data type (which was \(\mathbb{N} \) in the proof above) were used in each step of the proof. Later we will encounter more examples of reasoning about specifications, sometimes formal and sometimes informal. Invariably we will draw on assertions taken from pre- and post-conditions, and use properties of the data type concerned.

Exercise 3.2

Paraphrase the formal proof given above in natural language, producing an ‘informal argument’ that the output parameter \(x \)’s value is unique.

3.3 Introduction to VDM Data Types

The use of numbers and their associated primitive functions in the examples above was for illustrative purposes only. Less simple applications require a well defined, expressive specification language - one that allows the user to build problem-oriented, structured models.

VDM allows the creation of such models via user-defined types. Complex models can be built up hierarchically from primitives, and there is a similarity here with modern programming languages, which also allow the construction of user-defined types. The difference is that VDM data structures are abstract in the sense of not being influenced by computer storage or implementation details, but rather being based around mathematics and logic.

VDM has ‘built-in’ four well defined and expressive data structures - Sets, Composites, Sequences and Maps. To introduce these data types we will describe the type Set, and some of its associated predicates, in section 3.3.2. First we present the standard primitive types allowed in VDM. As a convention the name of all data types will start with a capital letter.
3.3.1 The Primitive Types

The main primitive types in VDM are:

- **Boolean** - denoted by ‘B’, and given by the set \{true, false\}
- **Natural** - denoted by ‘N’ and given by the values 0, 1, 2, 3, 4, 5, 6, 7,
- **Integer** - denoted by ‘Z’ and given by the values ...-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...
- **Real** - denoted by ‘R’, and given by the real numbers.

These types were previously introduced as sets in section 2.2.1. Creating a new type in VDM is similar to creating one in a Pascal-like programming language, the format:

\[
\text{type name } = \text{type expression}
\]

is used. If we want to create a type which consists of a few named constants, this can be done using VDM’s bar operator, written ‘|’. For example:

\[
\text{Colours } = \text{GREEN | BLUE | RED}
\]

\[
\text{Written_numbers } = \text{ONE | TWO | THREE | FOUR}
\]

\[
\text{Week_days } = \text{MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY}
\]

\[
\text{Going } = \text{GOOD | GOOD_TO_SOFT | SOFT}
\]

An unspecified collection of constants or identifiers is denoted by the type \textit{Token}. A parameter of type \textit{Token}, therefore, takes values which are constants or identifiers (written as strings of characters, and usually put in a ‘small capital’ font, as above).

3.3.2 The Set Type

Sets were introduced as mathematical abstractions in chapter 2; nevertheless, we remind the reader here of their defining characteristics, while considering them from a computational standpoint. In VDM, a set is a data structure composed of a collection of distinct instances of some \textit{base type} T. Each of these instances is called an \textit{element} (or sometimes \textit{member}) of the set. For instance, taking the base type to be N, then some example sets written in the VDM syntax are as follows:

\{1, 4, 9, 16, 25, 36, 49, 64, 81\}

\{1, 3, 5, 7, 9, 11\}

\{\} (called the \textit{empty set})

Note that the ordering of elements when a set is written down makes \textit{no} difference. For example,
\{1, 4, 9, 16, 25, 36, 49, 64, 81\},
\{9, 4, 1, 16, 25, 36, 49, 64, 81\},
\{36, 49, 64, 81, 1, 4, 9, 16, 25\}

all represent the same set. As with the integer type, sets have well-defined primitive functions and predicates, first introduced in section 2.2. A selection of these which we will use in this book are as follows:

- ‘\(\in\)’ (which reads ‘is an element of’) is a two place predicate which evaluates to true or false when supplied with two argument values. It is true if its first argument is a member of its second (set) argument. For example:

\[
9 \in \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = true
\]
\[
42 \in \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = false
\]

- ‘\(\cup\)’ (which reads ‘union’) is a function which takes two sets and evaluates to the set containing all the elements in either set. For example:

\[
\{1, 4, 9, 16\} \cup \{1, 2, 4, 6, 9\} = \{1, 4, 9, 16, 2, 6\}
\]
\[
\{4, 9, 16, 25, 36\} \cup \{1, 2, 4, 6\} = \{4, 6, 9, 16, 25, 36, 1, 2\}
\]

- ‘\(\cap\)’ (which reads ‘intersection’) is a function which takes two sets and evaluates to the set containing all the elements in both sets. For example:

\[
\{1, 4, 9, 16\} \cap \{1, 2, 4, 6, 9\} = \{1, 4, 9\}
\]
\[
\{4, 9, 16, 25, 36\} \cap \{1, 2, 4, 6\} = \{4\}
\]

- ‘\(\setminus\)’ is a function which takes two sets and returns the set difference. This means that when applied to two sets ‘\(\setminus\)’ returns the set containing all the elements which appear in the first set but not in the second. For example:

\[
\{1, 4, 9, 16\} \setminus \{1, 2, 4, 6, 9\} = \{16\}
\]
\[
\{4, 9, 16, 25, 36\} \setminus \{1, 2, 4, 6\} = \{9, 16, 25, 36\}
\]

The suffix -set after a type T denotes a Set type with T as the base type. Thus the expression ‘\(\mathbb{N}\text{-set}\)’ denotes the set whose elements are sets of natural numbers; all the sets used in the examples above are in fact instances of this type. Other examples follow:

\{1, -4, 9, -16, 2, -6\} is a value of the type \(\mathbb{Z}\text{-set}\);

\{\{1, 4, 9\}, \{2, 1\}\} is a value of the type \((\mathbb{N}\text{-set})\text{-set}\).

Any type which has -set as a suffix, has the empty set, \(\{\}\), as an instance.

3.3.3 Worked Example using Sets

Using pre- and post-conditions, specify an operation which inputs a number \(n\) and a set \(X\), and returns true if \(n\) is in the set, and false otherwise.
Answer: The heading of the operation is straightforward, simply a listing of the input and output parameters in the VDM style:

\[\text{IS_IN_SET}(n : \mathbb{N}, X : \mathbb{N}\text{-set}) \ b : \mathbb{B} \]

Next to consider is the post-condition: to construct this we need do little more than formalise the question, that is we want the boolean parameter \(b \) to output:

- \(\text{true} \) if \(n \in X \)
- \(\text{false} \) if \(n \notin X \)

This can be summed up by the logical condition:

\[(n \in X \Rightarrow b = \text{true}) \land (n \notin X \Rightarrow b = \text{false}) \]

or as a shorter alternative:

\[b \leftrightarrow (n \in X) \]

which reads "\(b \) is true if and only if \(n \) is an element of \(X \)."

Finally, we deal with the pre-condition: we must consider whether there are any bindings (legal values) of the input parameters for which the operation would be undefined. At this stage it is a good idea to consider ‘boundary’ or extreme values of the data types associated with the input parameters, such as \(0 \) and \(\{ \} \). In this example, all legal values of the inputs will give a post-condition which can be satisfied: in other words, a value for the output parameter \(b \) can be determined whatever the input values. Hence the pre-condition is written simply as \(\text{true} \). Our final version of the operation is:

\[\text{IS_IN_SET}(n : \mathbb{N}, X : \mathbb{N}\text{-set}) \ b : \mathbb{B} \]

\begin{itemize}
 \item pre \(\text{true} \)
 \item post \(b \leftrightarrow n \in X \)
\end{itemize}

The pre-condition is used to record restrictions on the use of operations: if the input values do not make the pre-condition \(\text{true} \), then the operation cannot be used in that particular instance. In the \(\text{IS_IN_SET} \) example, the pre-condition is literally the value \(\text{‘true’} \), hence the operation should be defined for any input values.

\section*{Exercises 3.3}

1. Write down examples of the types \(\mathbb{B}\text{-set} \) and \((\mathbb{B}\text{-set})\text{-set} \). How many distinct values has the type \(\mathbb{B}\text{-set} \)?

2. Using pre- and post-conditions, specify an operation which inputs a set of numbers and outputs the maximum of that set.

3. The Set is a data structure in Pascal. By consulting a textbook or manual, compare the mathematical concept of a set and Pascal’s Set type.
3.3.4 Implicit Definition of Sets

It is often useful to be able to define a set implicitly by stating a logical condition that an element must satisfy to be a member of that set (see section 2.2.1). The first two examples in section 3.3.2:

\{1, 4, 9, 16, 25, 36, 49, 64, 81\}
\{1, 3, 5, 7, 9, 11\}

could be redefined thus (assuming predicate odd has already been defined):

\(\{x^2 \mid x \in \mathbb{N} \cdot x \leq 9\}\)
\(\{x \mid x \in \mathbb{N} \cdot \text{odd}(x) \land x \leq 11\}\)

where the bar “|” means “such that”, and the expression before the dot “·” binds the variable(s) to range through a type. The bar symbol is overloaded in VDM, as we have already seen it is also used in type expressions. On the right hand side of the bar is a formula which the parameter on the left hand side of the bar must satisfy, if it is to represent a value of the defined set. In VDM this is called set comprehension. In the first example, the values of \(x\) satisfying the formula on the right hand side of the bar are

\{1, 2, 3, 4, 5, 6, 7, 8, 9\}

but the occurrence of \(x^2\) before the bar means that all the members must be operated on by the squared function, resulting in the set:

\{1, 4, 9, 16, 25, 36, 49, 64, 81\}

Exercise 3.4

We can define set union using comprehension as follows:

\(A \cup B = \{x \mid x \in A \lor x \in B\}\)

Define the intersection and difference set operations in a similar fashion.

3.4 Creating VDM State Models

Up to now we have considered operations specified wholly in terms of data values passed in and out of them via parameters. Parameters may be assigned arbitrary data types, and this form of specification is theoretically sufficient although somewhat unrealistic for all computing applications.

A model based approach to forming a specification involves capturing the central object or objects in an application with a well fitting data structure. In Information Systems applications, for example, the central object might be a library system or some other large data base; in compiler applications it may be a symbol table (see chapter 4), while in Automatic Planning applications it may be a partially completed plan (see chapter 6).
It seems unnatural to use parameters as the sole means of allowing operations to access and manipulate this kind of data, because the whole object would have to be represented by input parameters whenever any part of it was needed by an operation.

This central object is called the system state, and instances of it are called states. Often an operation may only need to access or change a small part of the state; all other parts of the state are implicitly assumed to be unchanged. VDM allows operations to perform such effects by treating the state as a global data type, and by allowing operations to have ‘read’ and ‘write’ permissions on various parts of this state.

3.4.1 An Example using an External State

As an introductory example to the idea of a state, let us assume we have to specify a system which keeps a record of houses up for sale in an Estate Agent’s computer system. User defined types in VDM can be constructed as in modern programming languages, and (sparring the details) we will assume that we have created the data type Address. Let our simplified system state of the houses for sale be a Set with base type Address. In VDM this type, called Houses_for_sale, may be declared as:

\[\text{Houses}_\text{for}_\text{sale} = \text{Address-set} \]

As new houses are put onto the market and others sold, the state will change. A typical operation on this state would be one to delete an address of a house that had just been sold. The specification of operator \text{DELETE_HOUSE} would be as follows:

\[
\begin{align*}
\text{DELETE_HOUSE} (addr : \text{Address}) \\
\text{ext wr hs : Houses}_\text{for}_\text{sale} \\
\text{pre} & \quad \text{addr} \in \text{hs} \\
\text{post} & \quad \text{hs} = \text{hs} \setminus \{\text{addr}\}
\end{align*}
\]

In constructing this operation we use a similar procedure to the worked example of section 3.3.2, the main difference being that \text{DELETE_HOUSE} accesses and changes the system state represented by values of \text{Houses}_\text{for}_\text{sale}, via the local variable \text{hs}. The expression ‘ext wr’ stands for ‘external write’, and means that the operation is accessing an external, overwritable part (or in this case whole) of the system state. In particular, note that in the post-condition we need to refer to the input state \text{hs} as well as the output state, so that we can relate the two. Since the input state is somewhat foreign in the post-condition (which is supposed to be a condition on the output) in VDM it is decorated with a hook. For VDM operations:

- the pre-condition, written after ‘pre’, is a logical condition which in its most general form relates input parameters and the input state. Sometimes, as in the \text{IS_IN_SET} example, it may simply be ‘true’.

- the post-condition, written after ‘post’, is a logical condition which, in its most general form, relates input and output parameters and input and output states. Variable(s) representing the input state within the postcondition are decorated with a hook.
<table>
<thead>
<tr>
<th>values for input parameters</th>
<th>Satisfy output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-CONDITION evaluates POST-CONDITION</td>
<td>state and parameter values</td>
</tr>
<tr>
<td>evaluation</td>
<td>---TRUE----> output</td>
</tr>
<tr>
<td>input state</td>
<td></td>
</tr>
</tbody>
</table>
```
| | | values |
| | | |
```

<table>
<thead>
<tr>
<th>Evaluates to</th>
<th>No output state and</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>parameter values</td>
</tr>
<tr>
<td></td>
<td>can be</td>
</tr>
<tr>
<td>v v</td>
<td>found V V</td>
</tr>
</tbody>
</table>

| operation cannot be executed with these input values | operator is not satisfiable (see section 3.5.4) |

Figure 3.1: General Form of a VDM Operation

In the `DELETE_HOUSE` example, `hs` represents the input state in the pre-condition; in the postcondition, `hs` represents the output state, whereas `~hs` represents the input state.

Figure 3.1 gives a pictorial view of a typical VDM operation. The output state and parameter values are a set of values that make the post-condition true. Cases where no output values satisfy the post-condition, or more that one distinct set of values do, will be dealt with later in the chapter.

An operation which accesses, but does not change the state, is `IS_ON_MARKET`. It is a boolean operation which checks whether a particular address is up for sale:

```vdm
IS_ON_MARKET (addr : Address) b : B
ext rd hs : Houses_for_sale
pre true
post b ⇔ addr ∈ hs
```
The expression ‘ext rd’ means that the operation is accessing an external, readable part of the system state which cannot be changed by the operation. The post-condition ensures that the output parameter b takes the same boolean value as the expression $addr \in hs$. Note that there is no need for a bar over hs since the state represented by hs does not change.

Exercise 3.4

Write an operation similar to `DELETE_HOUSE` which adds a new address to the system, that is, it puts a house up for sale.

3.4.2 Composites

VDM states are usually made up from the second data-structuring facility we will now introduce. The **Composite type** resembles the record structure in Pascal-like languages, and is used when data of different types need to be structured together. The Estate Agent’s database needs to contain more than one distinct set of houses, and we shall see in the next section how this can be modelled using a composite type. As another example, consider an `Address` type: it can be created using the composition of different types representing street number, street name, post code etc.

One syntax for the Composite type is to write the name of the Composite type we are creating, followed by a list of component variables, each followed by their type. This general form looks like:

```
type_name :: component_name : component_type;
    ...  
    ...  
    component_name : component_type_n
```

Component types can be any primitive or pre-defined type - they can even be themselves composites. As another example, consider creating a 3-D co-ordinate type for the space \mathbb{N}^3, called `Coordinate`. The type definition would be:

```
Coordinate :: xaxis : N
    yaxis : N
    zaxis : N
```

Values of the Composite type are often referred to as ‘records’. They are represented using a `make` or constructor function. This takes values of the components as arguments (in the order used in the definition of the Composite type) and creates a value of the type. The letters `mk-` are placed with the component type name and followed by the component values in brackets. Here are some examples of values of the Composite type `Coordinate`:

- `mk-Ceordinate(0, 0, 0)`
- `mk-Ceordinate(1, 2, 3)`
- `mk-Ceordinate(11, 42, 333)`
The `mk` operator constructs composites, but we also need to access or select their individual components. In VDM, component names are used as selector functions, returning the value in their slot. These selectors can be in written with a pre-fix function syntax, or after a dot extension. Thus we can write:

```plaintext
xaxis(mk-Coordinate(1, 2, 3))
xaxis(mk-Coordinate(11, 42, 333))
yaxis(mk-Coordinate(1, 2, 3))
```

or

```plaintext
mk-Coordinate(1, 2, 3).xaxis
mk-Coordinate(11, 42, 333).xaxis
mk-Coordinate(1, 2, 3).yaxis
```

but in both cases the expressions' values are the same. We will adopt the dot extension syntax, as it may be more familiar to those who have programmed in a high level language. The values obtained from these expressions are:

```plaintext
mk-Coordinate(1, 2, 3).xaxis = 1
mk-Coordinate(11, 42, 333).xaxis = 333
mk-Coordinate(1, 2, 3).yaxis = 2
```

Exercises 3.5

1. Consider an example data model representing the states of a lift travelling between three floors:

   ```plaintext
   floors = ONE | TWO | THREE
   
   lift.positions = ONE | BETWEEN.ONE.AND.TWO | TWO | BETWEEN.TWO.AND.THREE | THREE
   
   lift_status :: position : lift.positions
                   goal_position : floors
                   direction     : UP | DOWN | STATIONARY
   ```

 The lift status when the lift is going up to floor three having just left floor two is represented by:

   ```plaintext
   mk-lift_status(BETWEEN.TWO.AND.THREE, THREE, UP)
   ```

 Write down the lift status when:

 (a) the lift is going down to floor one having just left floor two;

 (b) the lift is stationary at floor one.

2. In VDM, sets can be used to denote types, particularly sub-range types. Thus if we wanted a type `Day` to represent the numbered days in a month, we could declare it thus:
Design composite structures to represent:

(a) someone’s date of birth;

(b) someone’s address, including street name and street number.

3.5 A Systematic Approach to the Construction of VDM Specifications

It is useful for the purposes of learning how to write formal specifications to break down the process into steps. In VDM we can separate out the construction and development of a specification into 5 phases. The phases are: Creation of a System State, Construction of Data Type Invariants, Modelling of the System’s Operations, Discharging Proof Obligations and Specification Refinement, and are outlined in sections 3.5.1 through to 3.5.5. We have already encountered two of these: creation of a system state and operations on the state. Although the phases are related (in particular the first two phases, which may be performed at the same time), we will use them to both separate out our description of VDM, and also as a means by which we can create specifications. An Estate Agent’s Database will be used as a running example.

3.5.1 First Step: Creation of a System State

In this first phase, one constructs a data model of the target system, out of primitive types and built-in data structures, such as Sets and Composites. This model can be viewed as a user defined data type and implicitly defines the universe of possible states that the target system could be in during execution. Each state corresponds therefore to a value of the data model.

In more complex applications (such as in the case study of chapter 6) it may be that the data model cannot be immediately decomposed into built-in data structures. In this case we have to decompose the data model \(S \) into a composite of component data types less complex than \(S \). Each of these components can then be modelled with simpler user defined types, which themselves may be specified in a similar fashion to \(S \). We shall return to this subject of building blocks in chapter 5, but it will be enough for the purposes of this chapter to assume that \(S \) is simple enough to be modelled immediately by built-in data structures.

In section 3.4 we used the local variable name \(hs \) to refer to the state of the data type \(Houses\ for\ sale \) inside the operation \(DELETE_HOUSE \). On the other hand, if the state has many components that operations may access separately, then we can declare global variables to represent those parts of the state that operations can access by direct reference to the variable name. This is done by encapsulating the state variables in a special kind of composite definition written as follows (here ‘state’, ‘of’ and ‘end’ are literals that actually appear in the VDM definition):
state state_name of
 component_name : component_type_1
 ...
 ...
 component_name : component_type_n
end

A typical composite state value would have the form \(mk\text{-}state_name(x_1, \ldots, x_n) \), where \(x_1, \ldots, x_n \) are values of type \(component_type_1, \ldots, component_type_n \) respectively.

Running Example:

In the Estate Agent example of section 3.4, a typical system state is a set of addresses. To make the Estate Agent’s model more sophisticated, we will require that the system holds an address in one of two modes: ‘for sale’ and ‘under offer’ (the latter means that an offer has been made upon the property and has been informally accepted). A data model pairs up two Address sets, creating a composite state called \(Db \) for the database. The two component names are for sale, and under offer, as follows:

\[
\begin{align*}
\text{state } Db \text{ of} \\
\text{for sale} & : Address\text{-set} \\
\text{under offer} & : Address\text{-set}
\end{align*}
\]

Making the simplifying assumption that \(Address \) is a Composite as follows:

\[
Address : \text{street} : Token \\
\text{house_no} : \mathbb{N}
\]

then a simple state of this database, with two houses for sale and none under offer, would be:

\[
mk\text{-}Db(\{mk\text{-}Address(STRAND, 62), mk\text{-}Address(WHITEHALL, 26)}\}, \{ \})
\]

3.5.2 Second Step: Construction of Data Type Invariants

The desired system state may have relationships between its components that have to be fixed throughout its execution lifetime; or some of the component's structures may have to have their range tailored to fit the problem. This is akin to the idea of user-defined types in Programming, and Integrity Constraints in Databases\(^2\). In many applications we would like to record explicit assumptions about the properties and relationships of the data: VDM allows us to do this by defining a logical condition on the component data types of the state, or on the whole state itself, which restrict the values of these types.

This is done by presenting a definition of the following form after the state (or data type) declaration it refers to:

\(^2\)In C.J. Date’s ‘An Introduction to Database Systems’ [Date 90], an Integrity Constraint is defined as ‘a condition that all correct states of the database are required to satisfy’ - which is essentially the meaning of a data type invariant
The set of all states allowed by the basic definition

\[
\text{ALL 'VALID' STATES}.
\]

The set of all states allowed by the basic definition AND that make the invariant condition evaluate to TRUE

\[\text{inv exp} \triangle \text{condition} \]

where

- \(\text{exp}\) is an expression consisting of variables used to represent each of the state components, possibly bound together with a \textit{make} constructor. If the state or data type on which the invariant is being written has a single component, then \(\text{exp}\) may be a single variable representing a typical value.

- \(\triangle\) means ‘is defined as’. It is also used to explicitly define VDM functions (see chapter 5).

- \(\text{condition}\) is the invariant; it is the logical condition which, given values of the correct type for the variables in \(\text{exp}\), will evaluate to \textit{true} or \textit{false}. It must evaluate to \textit{true} for all valid instances of the state.

An invariant can be designed for the system state or data type, but if it is a condition on the system state then it can be included in the state composite definition, written under the state variable declarations. Figure 3.2 shows pictorially how it restricts the set of all states to that subset of states which make the invariant’s condition true.

As a simple example, if we wanted a state representing someone’s age in years, then we could declare it as follows:
state Person.age of
 n : N
 inv n △ n ≤ 130
end

The type declaration defines the states (values) of Person.age to be be natural numbers - clearly there are many unnatural age values here! The invariant restricts the possible states of Person.age to be natural numbers below 131. It therefore embodies the assumption people do not live any longer. States satisfying the invariant are sometimes called valid states, and the data type invariant defines the set of all valid states. Invariants can be thought of as global conditions on states. For instance, they could be explicitly added (using the logical and ‘\&’) to all operations’ pre-conditions on the input state, and all post-conditions on the output state. An important consequence is that we must demonstrate the invariants are not violated by the operators we specify (see section 3.5.4).

When creating a system state, one may have to choose between different representations. As well as recording assumptions that operations should not violate, the size of the invariant is said to be a good measure of the suitability of the data representation: a complex invariant suggests that the representation is not apt for the problem. The reason for this is quite simple - a small invariant means that the assumptions about the problem are recorded implicitly in the initial choice of data structure, which by definition makes the representation a more natural choice.

Running Example:

One invariant for Db that immediately springs to mind is that ‘no house should be both for sale and under offer at the same time’. This would help stop unscrupulous agents trying to obtain a better offer on a property, even though one has been verbally accepted. This restriction can be captured by the invariant given below in our extended definition of the state:

state Db of
 forsale : Address-set
 underoffer : Address-set
 inv mk-Db(forsale, underoffer) △ forsale \& underoffer = { }
end

The invariant declares that the intersection of the forsale and underoffer components of the database must be empty. Consider the following Estate Agent’s database:

\[mk-Db(\{mk-Address(\text{STRAND}, 62), mk-Address(\text{WHITEHALL}, 26)\}, \{mk-Address(\text{WHITEHALL}, 26)\}) \]

Clearly the two sets making up this state have a non-empty intersection, and so it does not satisfy the invariant. It therefore represents an invalid state of the database.
3.5.3 Third Step: Modelling of the system's operations

The operations on the system state may now be specified by considering what is required in terms of pre- and post-conditions. An operation is given a name, a collection of input and output parameters, and access permissions to parts of the system model identified by state variables. A typical form for an operation which changes (possibly part of) the state is then:

\[
\text{OP_NAME} (i : \text{inputs}) \ o : \text{output} \\
\text{ext wr s : state_type} \\
\text{pre pre}(i, s) \\
\text{post post}(i, s, o, s)
\]

In general, pre-conditions involve input parameters and input state variables, and post-conditions additionally may involve output parameter and output state variables. Here we use the phrase ‘\(i : \text{inputs}\)’ as shorthand for a list of zero, one or more input parameters, paired with their data type name. Similarly, ‘\(o : \text{output}\)’ is shorthand for zero or one output parameter; and finally, the state variable \(s\) could be split up as several variables having read or write access to various parts of the system state, as shown in the running example below.

Operations are not allowed to ‘call’ or reference other user-defined operations which access the system state. Inclusion of other operator names in operator conditions is not therefore permitted. Otherwise, the effect on the state would be opaque (it could be rather like a string of nested procedure calls in programming, where each procedure was dependent on and updated a global data structure - the overall effect would be very difficult to predict!). If a post-condition is large or too complex it can, however, be factored out for simplicity, with the use of user-defined functions and types. This facility will be addressed later in chapter 5, where the need for these functions will be established.

Finally, it is possible to specify operations whose post-conditions may be made true by more than one output state. We will deal with this eventuality in section 3.5.4.

Running Example:

An operation which changes both parts of the state is called MAKEOFFER. It needs an input parameter \(addr\) to hold the value of the address on which an offer has been made, but no values are output and therefore no output parameter is needed. The operation will remove \(addr\) from those houses up for sale, and place it in those under offer; hence it will access and change both parts of the state. In this case the operator's heading is as follows:

\[
\text{MAKEOFFER} (addr : Address) \\
\text{ext wr forsale : Address-set} \\
\text{wr underoffer : Address-set}
\]

The pre-condition of the operation needs to check that \(addr\)'s value is contained in the database. The post-condition should express the property required of the output state, that \(addr\) has been removed from \(for sale\) and is now in \(underoffer\). Hence the completed operator is:
\begin{verbatim}
MAKEOFFER(addr : Address)
ext wr forsale : Address-set
 wr underoffer : Address-set
pre addr ∈ forsale
post forsale = \overline{\text{for}sale} \setminus \{addr\} ∧ underoffer = \overline{\text{under}offer} \cup \{addr\}
\end{verbatim}

3.5.4 Fourth Step: Discharging Proof Obligations

Errors in specifications fall roughly into two areas: syntactic errors and semantic errors. Syntactic errors manifest themselves in incorrect lexicon, type inconsistencies and incorrect syntactic structure (for example giving a function the wrong number or type of arguments). On the other hand, semantic errors in the specification - roughly known as ‘logical’ errors - generally take the form of omissions in the conditions of operations and inconsistencies between data type invariants and operations.

In trying to eliminate errors from specifications, software tools are important. Formal specifications are written in formal languages, that is they have, like programming languages, precise syntax. Syntax checking tools are available for all serious formal specification languages including VDM. They are essential, particularly for creating large specifications. Anyone who has written a non-trivial program can testify to the fact that many syntax errors will arise, often repeatedly, before the program is made syntactically correct. Syntax checking tools in formal specifications perform a similar function, in that they can pick up on lexical errors, type mismatching and incorrect syntactic structure (and it is another advantage of formalisation that they exist).

It is the process of discharging proof obligations that is responsible for throwing up semantic or logical errors. Tools, sometimes called proof assistants, are also becoming available to help in the process of discharging proof obligations, and these complement syntax checkers. The need for these tools will be seen in section 3.6, where we describe the proof obligations in formal logic.

Satisfiability

Proof obligations are basically assertions that sum up the checks a developer should make at various stages of software development, to give assurance that specifications and designs are self-consistent. Although they are a general concept, in VDM we describe proof obligations at the specification stage as assertions which sum up satisfiability. The specification of an operation is satisfiable if it is possible to find an implementation (an algorithm) which satisfies the operation. An algorithm satisfies an operation if given any system state and/or input parameter values that makes its pre-condition true, the algorithm eventually produces an output state and/or output parameter values which makes the post-condition evaluate to true.

Discharging proof obligations means we have to argue, using the specification as a base, that these assertions are correct, for every operation we create. This process also makes the developer think deeply about the specification, consequently attaining a much better,
coherent understanding of it. Also, once the obligations have been discharged, it results in a much greater confidence in the validity of the specification.

In some cases, especially where data types have been tailored with invariants, it may not be obvious that the specification is satisfiable. Even simple specifications which do not access an external state may be problematic: for example, we might give the following operation as the answer to exercise 3.3 no. 2:

\[
\text{MAX_IN} \ (s : \text{N-set}) \ m : \text{N} \\
\text{pre} \quad \text{true} \\
\text{post} \quad m \in s \land \forall i \in s \cdot i \leq m
\]

This operation is not satisfiable: the post-condition is not achievable by any algorithm if the input parameter’s value was taken to be the empty set, that is \(s = \{ \} \). In this case \(m \in s \) is always false, and so the post-condition could not be true. The following is a correct version:

\[
\text{MAX_IN} \ (s : \text{N-set}) \ m : \text{N} \\
\text{pre} \quad s \neq \{ \} \\
\text{post} \quad m \in s \land \forall i \in s \cdot i \leq m
\]

Given this new post-condition, there is always a value of \(m \) which makes it evaluate to true, no matter what value of \(s \) is input (see figure 3.1). Hence the process of discharging proof obligations can throw up unforeseen errors in a specification, such as in the erroneous version of \text{MAX_IN} above.

In summary, an operation is satisfiable if:

\textit{for every possible valid input state and/or every possible legal input parameter value(s) which satisfy the pre-condition, it is possible to compute a valid output state and/or a legal output parameter value which makes the post-condition true.}

As we have seen an operator may not involve input or output parameters, or may not change the state. In these special cases the definition will be adapted accordingly.

Traditionally the satisfiability condition is broken down into two proof obligations, (a) and (b) below, which deal specifically with operations which change an external state. Consideration of the state invariant make satisfiability hard to prove, and breaking it into a two step process makes it easier to test each VDM operation.

For each operation we perform the following:

(a) for every possible valid input state and every possible legal input parameter value(s), which satisfy the pre-condition, prove an output state can be computed regardless of whether it satisfies the state invariant.

(b) prove that all output states are valid (that is they satisfy the state invariant).

Condition (a) asserts that given the invariants and the pre-conditions are made true by an arbitrary binding for the input state and input parameters, then the post-condition,
ignoring invariants on the output state, can be met.

Condition (b) then deals with the invariant on the output state - it asserts that an operation should never leave the system in an *inconsistent* state. This means proving that for every input state which makes the invariant true, the action of the operation, given its pre-conditions have been met, outputs a state which also makes the invariant true.

In fact (b) goes further; we have tentatively assumed that only one output state can satisfy the post-condition. Post-conditions can be written, however, which may be satisfied by more than one output state, and in this sense they form a *non-deterministic* operator specification. Condition (b) is strong in that it asserts that all (not just at least one of) these output states must be valid. Non-deterministic operations are used in chapter 6, and they prove a useful form of abstraction when we do not want an over-commitment to choice. Proving uniqueness of an output state is not therefore necessarily part of the proof obligation process (although it may be desirable).

Running Example:

To check that *MAKEOFFER* can be satisfied, we will use the two stage process. First we make (a) and (b) specific to this particular operation:

(a) for any possible non-intersecting address sets, *forsale* and *underoffer*, and any address *addr* which is a member of *forsale*, prove that an output state can always be computed.

(b) Given an output state can be computed which satisfies the post-condition,

\[
\text{forsale} = \text{forsale} \setminus \{\text{addr}\} \land \text{underoffer} = \text{underoffer} \cup \{\text{addr}\}
\]

prove it is necessarily valid.

No matter what address sets the input state components of *forsale* and *underoffer* represent, and what the value of *addr* is, the post-condition certainly admits an output state. This is so because both set difference and set union are always defined where their arguments are valid VDM sets, and the equality in the post-condition gives directly the output state values. Hence condition (a) is true.

To argue that (b) is true, we note that the state invariant on the input state, which is made up of the sets *forsale* and *underoffer*, asserts that they do not intersect. For the output state (represented by *forsale* and *underoffer*) to be invalid then one or more elements must be added to the input sets. Only one element, *addr*, is effectively added to the input state component *underoffer*. On the other hand, the same element is taken out of *forsale* to give the output state component *forsale*. Therefore the output state component sets, *forsale* and *underoffer*, also have an empty intersection and so satisfy the state invariant.

Note:

- This example of discharging proof obligations was straightforward, because the post-condition of the operation read virtually as an assignment statement (although
it must be stressed strongly that equality is a logic relation). More complex conditions and state invariants may require a higher degree of formality, and in section 3.6 we will describe how this can be achieved.

- The output state of \textit{MAKEOFFER} is unique, because set difference and set union always give a unique answer. Thus, not only does there always exist a valid output state, but it is also unique.

3.5.5 Fifth Step: Specification Refinement

The final phase in the methodology is generally the most difficult. Once a top level specification has been produced, tuned to the requirements, and proof obligations discharged, we may have to refine both the operations and the system model into a correct implementation.

The abstract mathematical data types used in the specification are not normally implementable in a general purpose programming language, and in any case may be grossly inefficient representations. As well as this, an operation's implicit, abstract post-condition needs to be refined into an explicit algorithm which satisfies it.

In this book we are interested in the first four phases of this methodology, and we will essentially leave out the last phase: instead of describing specification refinement, we will consider only specification prototyping, for the following reasons:

- we are interested in specification construction rather than program design; the development of programs from specifications is an area which itself has books devoted to it (see for instance [Backhouse 86]).

- the field of data and operation refinement is very controversial: correctness proofs involved in refinement are very complex even for small applications, although the methods behind them are well understood. Automated ways of translating specifications into programs are a subject of current research.

- we devote part of the book to prototyping, which is itself a way of producing a faithful, though usually inefficient implementation. Specification prototyping will be addressed in chapter 7, for VDM, and chapter 13, for the algebraic approach.

3.6 Formal Proof Obligations

We have seen in section 3.5.4 how proof obligations can be discharged informally, and often this will be enough to give the developer a depth of understanding to iron out logical errors, leading to a better specification. One advantage of using a formalism to capture the system state and its operations, however, is that we can also formalise the proof obligations.

Firstly, we will show how the satisfiability condition can be turned into an assertion about a VDM operation, using the general form for an operation given in section 3.5.3.
Then, from this assertion, we will derive formalisations of proof obligations (a) and (b) from section 3.5.4.

For a given operation, let s_i represent the input state, s_o the output state, i an input parameter and o an output parameter (for the moment we assume for simplicity that the operation has one input and one output parameter). Then the first part of the satisfiability condition:

‘for every possible valid input state and/or every possible legal input parameter value, which satisfy the the pre-condition..’

translates to:

$$\forall s_i, i \cdot \text{pre-op}(i, s_i)$$

The second part:

‘it is possible to compute a valid output state and/or legal output parameter value which make the post-condition true’

translates to:

$$\exists s_o, o \cdot \text{post-op}(i, s_i, o, s_o)$$

The logical assertion abstracts away ‘to compute’ and replaces it with the existential quantifier - there only needs to exist values for the output state and output parameter. Putting these together, the final assertion is:

$$\forall s_i, i \cdot (\text{pre-op}(i, s_i) \Rightarrow \exists s_o, o \cdot \text{post-op}(i, s_i, o, s_o))$$ (3.1)

Note we are assuming that the quantifiers range across valid type values only: any data type invariants which exist are implicitly included in the condition. A version of assertion (3.1) which makes the invariant of the state explicit is as follows:

$$\forall s_i, i \cdot (\text{inv}(s_i) \land \text{pre-op}(i, s_i) \Rightarrow \exists s_o, o \cdot (\text{inv}(s_o) \land \text{post-op}(i, s_i, o, s_o)))$$ (3.2)

This leads immediately to the formalisation of assertions (a) and (b) of section 3.5.4:

$$\forall s_i, i \cdot (\text{inv}(s_i) \land \text{pre-op}(i, s_i) \Rightarrow \exists s_o, o \cdot \text{post-op}(i, s_i, o, s_o))$$ (3.3)

$$\forall s_i, i, s_o, o \cdot (\text{inv}(s_i) \land \text{pre-op}(i, s_i) \land \text{post-op}(i, s_i, o, s_o) \Rightarrow \text{inv}(s_o))$$ (3.4)

These two proof obligations generalise to operations which have zero or more than one input parameters, and possibly no output parameter. In chapter 5 we will present the
proof obligations for pure functions, an important special case of these assertions (in particular functions have no input or output state).

Running Example:

As an example we will formally prove condition (b) for the MAKEOFFER operator. Let \(f_i \) and \(u_i \) (\(u_o \) and \(f_o \)) be arbitrary instances of the input (output) state variables \(\text{forsale} \) and \(\text{underoffer} \) of \(D_b \).

In this case assertion (3.4) becomes (assuming all variables are universally quantified):

\[
((f_i \cap u_i = \{ \}) \land (\text{addr} \in f_i) \land (f_o = f_i \setminus \{ \text{addr} \}) \land (u_o = u_i \cup \{ \text{addr} \}) \Rightarrow (f_o \cap u_o = \{ \}))
\]

To prove an assertion of the form \(\text{LHS} \Rightarrow \text{RHS} \) is true, we need to prove that \(\text{RHS} \) is true whenever \(\text{LHS} \) is true, for arbitrary values of the universally quantified variables. Hence what we need to show is that, if each of the four conditions preceding the ‘ \(\Rightarrow \) ’ are met for arbitrary \(f_i, u_i \) etc., then the condition after ‘ \(\Rightarrow \) ’ is true. For the sake of the proof, we will number these conditions as follows:

1. \(f_i \cap u_i = \{ \} \)
2. \(\text{addr} \in f_i \)
3. \(f_o = f_i \setminus \{ \text{addr} \} \)
4. \(u_o = u_i \cup \{ \text{addr} \} \)

To show \(f_o \cap u_o = \{ \} \) is true, it is sufficient to show that given an arbitrary member of \(f_o \), it is not a member of \(u_o \) (in the case of \(f_o = \{ \} \), it is immediately true that \(f_o \cap u_o = \{ \} \)). We will let this be the starting point of the proof:

5. \(\text{let } x \in f_o \)

by (3) and (5):

6. \(x \in f_i \setminus \{ \text{addr} \} \)

from (6) and the properties of sets:

7. \(x \in f_i \)

from condition (1) and (7):

8. \(x \notin u_i \)

From (3) and (5), \(x \notin \{ \text{addr} \} \), so that \(x \neq \text{addr} \). Hence from (8):

9. \(x \notin u_i \cup \{ \text{addr} \} \)

from (9) and (4):

10. \(x \notin u_o \)

and finally from (10) and (5), and the fact that \(x \) was chosen arbitrarily, we have the
required result that:
\[f_o \cap u_o = \{ \} \]

3.7 Summary

In this chapter we have introduced the idea of model-based specification. A specification is based around the creation of a system model using:

- a collection of operations defined by pre- and post-conditions;
- a collection of data structures which are built from well-defined primitive types including the Set and the Composite;
- a particular data model called the system state which operations are free to access.

We also introduced a staged method of developing specifications along the following lines:

- building abstract data structures (in particular a system state), from VDM’s primitive data structures;
- constructing data type invariants, which embody constraints on a data type, restricting its set of values to precisely what is required;
- modelling the system’s operations and discharging proof obligations on them.

Additional Problems 3

Problem 1. Using the model of section 3.5, write the following Estate Agent Database operations:

1. *PUT_UP_FORSALE*: inputs a new address and puts it in the database.
2. *UNDEROFFER*?: checks whether an address is under offer.

Discharge the proof obligations for both operations.

Problem 2. Create a data type invariant for the lift composite which will rule out states that are not sensible, such as:

\[mk\text{-}lift\text{-}status(\text{THREE}, \text{THREE}, \text{UP}) \]

Problem 3. Write an operation for the lift composite which outputs true if and only if its position is the same as its goal position.

Problem 4. Change the Estate Agent example, so that the database holds the price of each house. Write an operation which inputs a house price, and outputs the set of all houses which are at or below this price.
Problem 5. This problem involves further changes to the Estate Agent example. Assume the data type which represents a house, called Address, is given. The system should hold three sets of addresses:

(1) 'on record': all houses, including all those for sale and sold, that have been processed by the Estate Agent;
(2) 'for sale': those houses on the market;
(3) 'sold': those houses that the Estate Agent has sold, and are no longer on the market.

N.B. the Estate Agent may sell the same house twice.

Create a suitable VDM data model called Db for the problem. Include a data type invariant to capture the constraints given above. Specify operations that:

(i) put a house up for sale.
(ii) take a house off the market that has not been sold.
(ii) outputs the set of houses that that were advertised but never sold.

Present an informal argument showing that the operations preserve the data-type invariant.

Suggest a change to your VDM data model which allows the system to record the re-sale of a previously sold house.

Bibliography

Chapter 4

The Sequence and Map types

4.1 Introduction

This chapter introduces VDM's Sequence and Map data types, and shows their use in small specifications. When the ordering of instances of a data type matter, then the Sequence type is required to hold those instances; without the need for ordered data, then the Set type would be adequate. The Map type is used when there is a correspondence between two types of data: between people and their age, between bank accounts and account number, between cars and their engine type, between program variables and their data type, and so on. This correspondence must be functional, in the sense that people have only one age, bank accounts have a unique account number, cars have only one engine type, and program variables have a unique data type. As with the Set and Composite types, the Sequence and Map are actually generic types, because they are built up from arbitrary base types.

The chapter ends with a small but useful example, that of formally specifying the standard operations required by a compiler on a symbol table. The symbol table is a data structure which holds the identifiers (and their associated attributes) which are declared within the program that a compiler is processing. This example is used to show the combination of all four data types.

As in the last chapter, we will use capital letters to refer to a type - hence 'Sequence' refers to the type, whereas 'sequence' refers to a particular or arbitrary instance of a sequence, that is an actual data structure.

4.2 The Sequence Data Type

The Sequence data type is an abstraction of the List type, found in many programming languages such as Prolog and Lisp. It has several features in common with the Set type that we met in the last chapter:

- A sequence value contains a collection of elements, all of the same type (called the base type). As with the Set, the Sequence type is polymorphic, in that it can take
any type as its base type.

- A sequence can (theoretically) contain any number of elements.

On the other hand there are two things which differentiate sequences from sets:

- the elements of a sequence are *totally ordered*. Ordering is determined by position in the sequence, from left to right.
- each element contained in a sequence is not necessarily unique, that is the same element may occur repeatedly.

When represented explicitly, sequence elements are written separated by commas, and the whole sequence is enclosed in square brackets. For example the following are sequences of base type \(\mathbb{N} \):

\[
[56,34,78,56] \\
[34,23,12,45,56,67]
\]

The value ‘[]’ is called the *empty sequence*, and is very similar to the empty set in many respects, as we shall see. Variables of type sequence are declared by writing their base type followed by an asterisk. Hence the type ‘sequence of integers’ would be declared ‘\(\mathbb{N}^* \)’. Sequences can be combined with other structures, for example

\[
\{[true, true], [false, true, false], [true]\}
\]

is a value of type Set whose base type is Sequence of Boolean. This type would be declared ‘\(\mathbb{B}^*\text{-set} \)’. Similarly, the value

\[
\{[3, 2, 1], \{42\}\}
\]

is of type Sequence of Sets of natural numbers, written ‘\((\mathbb{N}\text{-set})^*\)’. The Sequence type comes equipped with its own collection of VDM functions and predicates. The main predicate is equality (‘=’), and two sequences are equal if and only if they have the same length and have identical elements in each position. Several examples of primitive operations are given below:

- \(__ \): this is the concatenate or join operation. It is binary infix, and has the effect of gluing its two arguments into one sequence, in the obvious fashion, as shown by the following examples.

\[
\begin{align*}
[56,34,78,56] __ [34,23,12,45,56,67] &= [56,34,78,56,34,23,12,45,56,67] \\
[34,23,12,45,56,67] __ [56,34,78,56] &= [34,23,12,45,56,67,56,34,78,56]
\end{align*}
\]
Note that its two arguments must be of identical type - that is the base types of the sequences must be the same. Concatenating the empty list with any other list leaves that list unchanged:

\[
[34,23,12,45,56,67] \leftarrow [] = [34,23,12,45,56,67]
\[
[] \leftarrow [\text{true}, \text{false}, \text{true}] = [\text{true}, \text{false}, \text{true}]
\[
[[3,2,1], \{42\}] \leftarrow [] = [[3,2,1], \{42\}]
\]

- **len**: this is the operation which returns the length of a sequence, for example

 \[
 \text{len} \ [34,23,12,45,56,67] = 6
 \]
 \[
 \text{len} \ [56,34,78,56] = 4
 \]
 \[
 \text{len} \ [] = 0
 \]
 \[
 \text{len} \ [[\]] = 1
 \]
 \[
 \text{len} \ [[3,2,1], \{42\}] = 2
 \]
 \[
 \text{len} \ [\text{true}, \text{false}, \text{true}] = 3
 \]

- **hd**: this is pronounced *head*. Its value when applied to a sequence is the first element, the head, of that sequence. For example

 \[
 \text{hd} \ [34,23,12,45,56,67] = 34
 \]
 \[
 \text{hd} \ [56,34,78,56] = 56
 \]
 \[
 \text{hd} \ [[\]] = \{
 \}
 \]
 \[
 \text{hd} \ [[3,2,1], \{42\}] = \{3,2,1\}
 \]
 \[
 \text{hd} \ [\text{true}, \text{false}, \text{true}] = \text{true}
 \]

 Note: **hd** is not defined on `[]`.

- **tl**: this is pronounced *tail*. Its value when applied to a sequence is equal to the sequence with the first element (the head) removed, for example

 \[
 \text{tl} \ [34,23,12,45,56,67] = [23,12,45,56,67]
 \]
 \[
 \text{tl} \ [56,34,78,56] = [34,78,56]
 \]
 \[
 \text{tl} \ [[\]] = [\]
 \]
 \[
 \text{tl} \ [[3,2,1], \{42\}] = [(42)]
 \]
 \[
 \text{tl} \ [\text{true}, \text{false}, \text{true}] = [\text{false}, \text{true}]
 \]
 \[
 \text{tl} \ (\text{tl} \ [34,23,12,45,56,67]) = [12,45,56,67]
 \]
 \[
 \text{hd} \ (\text{tl} \ [34,23,12,45,56,67]) = 23
 \]

 Note: **tl** is not defined on `[]`.

- **elems**: this takes a sequence and returns the set of all its elements:

 \[
 \text{elems} \ [34,23,12,45,56,67] = \{34,23,12,45,56,67\}
 \]
 \[
 \text{elems} \ [56,34,78,56] = \{34,56,78\},
 \]
 \[
 \text{elems} \ [[\]] = \{\}
 \]
 \[
 \text{elems} \ [[3,2,1], \{42\}] = \{3,2,1\}, \{42\}
 \]
 \[
 \text{elems} \ [\text{true}, \text{false}, \text{true}] = \{\text{false}, \text{true}\}
 \]
 \[
 \text{elems} \ [\] = \{
 \}
Sequences, just like sets, have a number of formally defined properties. For instance, given any non-empty sequence \(s \), the following equality is true: concatenating the list of one element, the head of \(s \), with the tail of \(s \), evaluates to \(s \) itself. This can be expressed more concisely as: for all non-empty sequences \(s \),

\[
[\text{hd } s] \leftarrow (\text{tl } s) = s
\]

Rather than providing a list of all such properties, we will introduce them as needed, but the reader is reminded that they are necessary so that we can reason with the data types. Since VDM data types are mathematically sound, any relevant property or theorem from mathematics can be used when reasoning about them.

Exercises 4.1

1. Assume a sequence \(s \) is of length greater than 3. Then an expression which represents the second element of the sequence is:

\[
\text{hd } (\text{tl } s)
\]

Write down expressions which represent the third and fourth elements of \(s \).

2. Well formed expressions consisting of the Sequence operators above may be evaluated. For example:

(a) \(\text{elems } (\text{hd } (\text{tl } [[1, 2], [5, 5, 1]])) = \text{elems } (\text{hd } [[5, 5, 1]]) = \text{elems } [5, 5, 1] = \{5, 1\} \).

(b) \((\text{tl } [\text{true}, \text{true}]) \leftarrow [\text{false}] = [\text{true}] \leftarrow [\text{false}] = [\text{true}, \text{false}] \)

Evaluate the following in the same way:

(c) \((\text{hd } (\text{tl } [[1, 2], [5, 5, 1]])) \leftarrow [5, 5, 1] \)

(d) \(\text{tl } ([[1, 2], [1, 2]]) \leftarrow (\text{tl } [\ [\]]) \)

(e) \(\text{elems } ((\text{tl } (\text{tl } [34, 23, 12, 45, 56, 67])) \leftarrow [12, 45]) \)

3. Substitute for \(s \) in formula

\[
[\text{hd } s] \leftarrow \text{tl } s = s.
\]

some of the example sequences above, and evaluate the resulting expression to \(\text{true} \).

4. We stated that two sequences are equal if and only if they have the same length and have identical elements in each position. For any two sequence variables \(s \) and \(t \), of base type \(T \), and any elements \(a \) and \(b \) of type \(T \), if we have:

\[
[a] \leftarrow s = [b] \leftarrow t
\]

show that \(s = t \) and \(a = b \).
4.3 A Model-based Specification of the Stack

4.3.1 Requirement

Many computer oriented data-structures can easily be specified in VDM: the queue and the stack are straightforward to write in VDM. As an example, we will choose a finite stack of numbers, and model it as the composite of a sequence and a size limit1. The operations we require are:

\textit{INIT} - create a new stack

\textit{PUSH} - put an integer on to the stack

\textit{POP} - return the top element (integer) of the stack AND remove the top element (integer) from the stack

\textit{EMPTY} - return true if and only if the stack is empty

\textit{FULL} - return true if and only if the stack is full

Figures 4.1 and 4.2 give pictorial examples of the PUSH and POP operations on a stack of numbers.

4.3.2 Creation of the System State

It seems natural to model the stack with two components: an integer, denoting the maximum stack size, and a sequence of integers denoting the contents of the stack:

\[
\text{Contents} = \mathbb{N}^*
\]

\[
\text{Max_stack_size} = \mathbb{N}
\]

and our state becomes:

\[
\text{state Stack of}
\]
\[
 s : \text{Contents}
\]
\[
 n : \text{Max_stack_size}
\]

end

If we decide that the ‘top’ of the stack is going to be the left hand end of the sequence, and the stack’s maximum size is to be 100 integers, then the input stack to the PUSH and POP operation in figures 4.1 and 4.2 is represented explicitly as

\[
mk-Stack([45,78,29,56,78], 100)
\]

1Although this is a well-worn example, the stack provides a simple introduction to the use of the Sequence, and also to Algebraic Specifications in chapter 8
PUSH(23)

Input Stack	Output Stack

figure 4.1: A PUSH operation on a Stack

POP

Input Stack	Output Stack

Figure 4.2: A POP operation on a Stack
4.3.3 Construction of Data Type Invariant

We need to relate the length of the stack with the maximum stack size in the following way: the length should always be less than or equal to the maximum size. The fact that stacks can never have 'negative' size is captured by the sequence, so we do not have to make this explicit in the invariant. Our completed state model is:

\[
\text{state \ Stack of} \\
\text{} s : \text{Contents} \\
\text{} n : \text{Max_stack_size} \\
\text{inv mk-Stack}(s, n) \triangleq \text{len } s \leq n \\
\text{end}
\]

4.3.4 Modelling of the System's Operations

By considering the pre- and post-conditions required for each of the operations, we can formalise them as follows. INIT will create a stack of potential length 'size' and initialise the sequence to be empty:

\[
\text{INIT (size : N)} \\
\text{ext wr } s : \text{Contents} \\
\text{} \text{wr } n : \text{Max_stack_size} \\
\text{pre true} \\
\text{post } s = [] \land n = \text{size}
\]

EMPTY and FULL will monitor the size of the stack contents. Neither will change the stack's state, hence the use of 'ext rd':

\[
\text{EMPTY () b : B} \\
\text{ext rd } s : \text{Contents} \\
\text{pre true} \\
\text{post } b \leftrightarrow (s = [])
\]

\[
\text{FULL () b : B} \\
\text{ext rd } s : \text{Contents} \\
\text{} \text{rd } n : \text{Max_stack_size} \\
\text{pre true} \\
\text{post } b \leftrightarrow (\text{len } s = n)
\]

Finally, we specify operations that change the stack, PUSH and POP. Informally, the conditions are (bearing in mind that the stack top is at the left-hand side of the sequence):

PUSH:

- **pre** the stack should have enough room for another element;
- **post** the output stack is made up of the stack whose tail is the input stack and whose head (top) is the input value;
POP:

pre the stack should contain at least one element;
post the output stack is the tail of the input stack and the output value is the head (the top) of the input stack.

The completed operations are:

\[
PUSH (c : N) \quad ext \ wr \ s : Contents
\]
\[
rd \ n : Max_stack_size
\]

pre \(len \ s < n \)

post \(s = [c] \sim \overline{s} \)

\[
POP () \ c : N \quad ext \ wr \ s : Contents
\]

pre \(len \ (s) > 0 \)

post \(\overline{\overline{s}} = [c] \sim s \)

Modelling the Stack introduces some of the subtleties of VDM:

- Concatenate ('\(\sim\)') is used in the post-condition of *PUSH* and *POP* to show the *relation* between the input and output states. The output state is often defined by an implicit relation between input and output states, as in the *POP* operation. It is left to the implementor to design an actual algorithm which changes the input sequence to obtain the output sequence. The value of output parameters, such as the boolean 'b' in the *EMPTY* and *FULL* operations, can also be defined implicitly.

- Details that are normally found in implementations - such as the 'stack pointer' - are not necessary here.

- Operations such as *INIT* create the first or initial value(s) in the data model which represents the state - in this case the empty stack.

4.3.5 Proof Obligations for the Stack

Recall from section 3.6, that for each operation, we have to prove that the following are true:

1. \(\forall t_i, i \cdot (inv(t_i) \land pre-op(i, t_i) \Rightarrow \exists t_o, o \cdot post-op(i, t_i, o, t_o)) \)
2. \(\forall i, t_i, o, t_o \cdot (inv(t_i) \land pre-op(i, t_i) \land post-op(i, t_i, o, t_o) \Rightarrow inv(t_o)) \)

where \(i \) represents zero, one or more input parameters, \(o \) represents zero or one output parameter, and \(t_i, t_o \) represent (possibly lists of) input and output state variables. (we have changed the usual letter \(s \) to \(t \) so that it is not confused with the stack variable \(s \))
For the stack, these proofs can be carried out relatively simply for each operation. In the case of \textit{POP}, the proof obligations (a) and (b) turn out to be:

(a) \(\forall n, s_i \cdot (\text{len } s_i \leq n \land \text{len } s_i > 0 \Rightarrow \exists s_0, c \cdot s_i = [c] \cap s_0) \)

(b) \(\forall n, s_i, c, s_0 \cdot (\text{len } s_i \leq n \land \text{len } s_i > 0 \land s_i = [c] \cap s_0 \Rightarrow \text{len } s_0 \leq n) \)

Note that we need only represent the maximum stack size by one variable \(n \) because that part of the state does not change under the action of \textit{POP}. As in section 3.6, we prove an assertion of the form \(\forall \ldots \text{LHS} \Rightarrow \text{RHS} \), by assuming \(\text{LHS} \) is true, then showing that \(\text{RHS} \) must also be true, for arbitrary universally quantified variables.

To prove (a), assume the two predicates on the left hand side of the \(' \Rightarrow ' \) are true. The condition \(' \text{len } s_i > 0 ' \) implies \(' s_i \neq [] ' \); now any non-empty sequence has a head and a tail, so we can take \(c \) to be \(' \text{hd } s_i ' \) and \(s_0 \) to be \(' \text{tl } s_i ' \), and these values satisfy the existential condition on the right hand side. Hence (a) is true, because we have shown that, assuming the left hand side is true, the right hand side must be true.

To prove (b), we use the fact that \textit{POP} never invalidates the invariant since it decreases the size of the stack. From the assumption:

\[s_i = [c] \cap s_0 \]

it follows that the input stack \(s_i \) is bigger than the output stack \(s_0 \), and from the assumption \(\text{len } s_i \leq n \) it therefore follows that \(\text{len } s_0 < n \). In this case the right hand side, \(\text{len } s_0 \leq n \) must also be true.

Discharging the proof obligations for \textit{PUSH} is left as an exercise. The other operations are easily dealt with: \textit{EMPTY} and \textit{FULL} do not affect the state, and so cannot invalidate the invariant, hence (b) holds. (a) holds since the predicate expressions in their post-conditions are trivially defined for all input values. Hence \(b \) will output \textit{true} or \textit{false} for any values of \(s \) and \(n \). For \textit{INIT}, (a) is immediately true, and (b) holds since the length of the output sequence is zero, which is less than or equal to any choice of maximum stack size.

4.3.6 Validation: a simple example

Working through these specification development phases, and the prototyping phase described in chapter 7, eliminates many sources of error from a specification, but still we may not have captured the required system. To help in validating that the \textit{Stack} operations are those we want, we can indulge in a little reasoning with their specification. Certain desirable properties of the required system may not be explicitly stated in the model, but we can reason with the model to predict whether these properties are in fact true.

For example, assuming the stack value in a state is \(s1 \), then the operations \textit{PUSH} and \textit{POP} executed in sequence should leave the stack as it was (regardless of the value of \textit{PUSH}'s parameter). In other words, the input stack of \textit{PUSH} should be identical to the output stack of \textit{POP}. If we call the output stack value of \textit{POP} \(s3 \), and the stack value between the operations \(s2 \), then
represents the sequence of operator executions and the values of the stacks between them. We can formally derive $s_1 = s_3$ using our specification. From the post-condition of $PUSH$ we have that:

$$s_2 = [c] \leadsto s_1$$

and from the post-condition of POP:

$$s_2 = [c'] \leadsto s_3$$

because s_2 is the input stack of POP. Combining these we have:

$$[c] \leadsto s_1 = [c'] \leadsto s_3$$

and using exercise 4.1 no. 4 we deduce:

$$s_1 = s_3$$

It also follows from this exercise that $c = c'$.

Exercises 4.2

1. The proof obligations for $PUSH$ are as follows:

 (a) $\forall n, s_i, c \cdot (\text{len } s_i \leq n \land \text{len } s_i < n \Rightarrow \exists s_o \cdot (s_o = [c] \leadsto s_i))$

 (b) $\forall n, s_i, c, s_o \cdot (\text{len } s_i \leq n \land \text{len } s_i < n \land s_o = [c] \leadsto s_i \Rightarrow \text{len } s_o \leq n)$

 Give a formal or informal proof of them. If the pre-condition of $PUSH$ was changed to $true$, could the proof obligations still be discharged?

2. Write an ‘explicit’ post-condition for POP, using the hd and tl sequence operations.

3. The stack can effectively be defined without the use of an external state. Redefine it with the same operations, but only using input and output parameters.

4. Specify a bounded ‘Queue of integers’ data type in VDM notation (readers who are unfamiliar with this data type can consult chapter 9 for an introduction).
4.4 A Horse Racing Information System

This worked example demonstrates further the uses of the Sequence type. It also develops
the use of composites and sets, and in particular the set comprehension technique.

A horse racing trainer wants a system which maintains the horse and jockey information
in her horse racing ‘stable’, including the sequence of races left in a season in which her
horses might run. For the moment, assume only two operations are required:

(1) output the names of the most successful horses

(2) update the horse information after race results

This example will be extended in the exercises at the end of the section, and in the
problems at the end of the chapter.

4.4.1 Creation of a System State

In horse racing, the ‘form’ of a horse can be represented as a sequence of placings in the
season’s races in which it has competed. If we decide to store whether a horse was the
winner, placed (second, third or fourth) or unplaced (not in the first four) then we can
define an appropriate type:

\[Position = \text{WINNER} | \text{PLACED} | \text{UNPLACED} \]

A horse’s placings in the races it has completed in a season can be represented as a
chronological sequence, with the most recent result at the front of the sequence:

\[Placings = Position^* \]

We also might want to record a horse’s favourite racing surface (‘going’), which corre-
sponds to the condition of the ground on which it performs best:

\[Going = \text{GOOD} | \text{GOOD_TO_SOFT} | \text{SOFT} \]

and finally a horse’s (or person’s) name can be represented as a sequence of tokens:

\[Full_name = Token^* \]

For example the name Northern Boy would be represented thus:

\[[NORTHERN, BOY]\]

Putting these definitions together, we get the following horse record type:

\[
\begin{align*}
\text{Horse ::} & \text{name : Full_name} \\
& \text{pos : Placings} \\
& \text{go : Going}
\end{align*}
\]
Assume that jockeys each have a horse which they normally ride, called a mount. As well as this we store their name and sex. Again, relying on a composite structure, we have:

\[
\begin{align*}
\text{Jockey} & : \text{name} : \text{Full_name} \\
& : \text{mount} : \text{Full_name} \\
& : \text{sex} : \text{MALE | FEMALE}
\end{align*}
\]

The Stable information system also needs to hold a chronologically ordered list of the race meetings still to run in the season. If a race meeting can be represented as a unique Token:

\[
\text{Race} = \text{Token}
\]

then the races left in the season will be represented by:

\[
\text{Races_left} = \text{Race}^*
\]

The information about a stable forms our state: the horses owned by the stable, the jockeys riding for the stable, and the names of the race meetings left in the season (that is those that the stable's horses will run in).

\[
\begin{align*}
\text{state Stable of} \\
& : \text{hrs} : \text{Horse_set} \\
& : \text{jks} : \text{Jockey_set} \\
& : \text{rel} : \text{Races_left}
\end{align*}
\]

end

The following expression (called \(H1\)) is a simple example of the state:

\[
\begin{align*}
\text{mk-Stable}(\{ \text{mk-Horse}([\text{RED, WINE}], [\text{WINNER, PLACED}], \text{GOOD}), \\
& \text{mk-Horse}([\text{NORTHERN, BOY}], [\text{UNPLACED, PLACED}], \text{SOFT}) \}, \\
& \{ \text{mk-Jockey}([\text{LESTER, PIGLET}], [\text{NORTHERN, BOY}], \text{MALE}), \\
& \text{mk-Jockey}([\text{FREDA, BLOGGS}], [\text{RED, WINE}], \text{FEMALE}), \\
& [\text{NEWMARKET, NEWCASTLE}, \text{AINTREE}] \})
\end{align*}
\]

4.4.2 Construction of Data Type Invariant

At this stage we include only the assertion "Every jockey has a mount within the stable". The state definition becomes:

\[
\begin{align*}
\text{state Stable of} \\
& : \text{hrs} : \text{Horse_set} \\
& : \text{jks} : \text{Jockey_set} \\
& : \text{rel} : \text{Races_left} \\
& \text{inv} \text{ mk-Stable(hrs, jks, rel) } \triangleq \forall j \in jks \cdot \exists h \in hrs \cdot j.mount = h.name
\end{align*}
\]

end

Exercise 4.3

Check that our state example \(H1\) satisfies the state invariant.
4.4.3 Modelling of the System’s Operations

Let \(\text{WINNERS} \) be the operation that returns the set of all horses in the stable that have won a race. Then the operation only needs read permission on part of the system state:

\[
\begin{align*}
\text{WINNERS}() & \text{ ws : Horse-set} \\
\text{ext rd hrs : Horse-set}
\end{align*}
\]

The post-condition needs to form a \(\text{set} \), and in this case the use of \(\text{set comprehension} \) is advised. The output parameter should contain all those horses which:

(a) belong to the stable

(b) have been winner in any of the season’s races

(a) and (b) are the two predicates used in the set comprehension expression below. No pre-condition is necessary on this operation (it is defined on any state), hence we have:

\[
\begin{align*}
\text{WINNERS}() & \text{ ws : Horse-set} \\
\text{ext rd hrs : Horse-set} \\
\text{pre} & \text{ true} \\
\text{post} \text{ ws = } \{ x \mid x \in \text{Horse} \cdot x \in \text{hs} \land \text{winner } \in \text{elems x.pos} \}
\end{align*}
\]

Applying the operation to \(H1 \) would give the result:

\(\{[\text{RED, WINE}] \} \)

Let \(\text{UPDATE} \) be the operation which updates the state with the results of a newly run next race. Let us assume that the race results are a \(\text{sequence of horse’s names} \), such that the order in the sequence corresponds to their position is the race (thus the winner will be first in the sequence):

\[
\text{Race.result} = \text{Full.names}^\ast
\]

The operation \(\text{UPDATE} \) will input the name of the meeting, and the race results. The operation will change the horses’ details, and the sequence of race meetings left in the season. As a pre-condition to the operation, we insist that the input meeting is the same name as the head of the sequence of stored ‘races left’. Also, in every race at least four horses must finish. The first part of \(\text{UPDATE} \) is therefore:

\[
\begin{align*}
\text{UPDATE}(\text{meeting} : \text{Race}, \text{rr} : \text{Race.result}) \\
\text{ext wr hrs : Horse-set} \\
\text{wr rcl : Races.left} \\
\text{pre} \text{ len rcl } > 0 \land \text{meeting } = \text{hd rcl } \land \text{len rr } > 3
\end{align*}
\]

As an example input,

\[
\begin{align*}
\text{meeting } = \text{NEWMARKET}, \\
\text{rr } = [[\text{MR, NOSY}], [\text{RED, WINE}], [\text{DICKENS}], [\text{PROOF, ASSISTANT}], [\text{NORTHERN, BOY}]]
\end{align*}
\]
The post-condition is somewhat complex, so we start with an informal description of what is required, in terms of state components:

- rel should have the name of the meeting that has taken place, removed;
- the new hrs component should be the union of the following sets:
 - all the horse records in the the old state where the horse was not in the current race results;
 - updated horse records for the stable’s horses which competed in the race.

If state $H1$ was updated with the race results given above, then the new state, $H2$, would be:

$$mk-Stable (\{ mk-Horse ([RED, WINE],
[PLACED, WINNER, PLACED], GOOD),
mk-Horse ([NORTHERN, BOY], [UNPLACED, UNPLACED, PLACED], SOFT)\},
\{ mk-Jockey ([LESTER, PIGLET], [NORTHERN, BOY], MALE),
mk-Jockey ([FRED, BLOGGS], [RED, WINE, FEMALE])\},
[NEWCASTLE, AINTREE])$$

The updated horse records are specified by stating that the relevant result must appear (in the output state) at the front of the corresponding sequence of race positions. Consider the problem of forming the set of new horse records for those horses which were second, third or fourth in the race. In the sequence rr of race results, which must be of length greater than three, we have (using the answer to exercise 4.1 no.1):

the horse who came second = second element of the list rr

$$= \text{hd} \ (t1 \ rr)$$

the horse who came third = third element of the list rr

$$= \text{hd} \ (t1 \ (t1 \ rr))$$

the horse who came fourth = fourth element of the list rr

$$= \text{hd} \ (t1 \ (t1 \ (t1 \ rr)))$$

The new set of records for these three horses will be the same as the old, except that the value PLACED is put at the beginning of their pos component. To capture this set, we use the set comprehension facility in such a way that it specifies a collection of records. The set of the three updated horse records, for example, is given by:

$$\{ mk-Horse (n, [placd] \ succ s, g) \mid mk-Horse (n, s, g) \in hrs \}
\cdot n \in \{ \text{hd} \ (t1 \ rr), \text{hd} \ (t1 \ (t1 \ rr)), \text{hd} \ (t1 \ (t1 \ (t1 \ rr)))\}$$

Using the set comprehension technique we can specify the other two sets, containing the winning horse and the unplaced horses respectively. The whole operation can be written:
UPDATE (meeting : Race, rr : Race_result)

ext wr hrs : Horse-set
wr rcl : Races_left

pre len rcl > 0 ∧ meeting = hd rcl ∧ len rr > 3

post rcl = tl rcl ∧
hrs = \{x | x ∈ hrs ∙ x.name ∉ elems (rr)\} ∪
{mk-Horse(n, [WINNER] s, g) | mk-Horse(n, s, g) ∈ hrs ∙ n = hd rr}\} ∪
{mk-Horse(n, [PLACED] s, g) | mk-Horse(n, s, g) ∈ hrs ∙
n ∈ {hd (tl rr), hd (tl (tl rr)), hd (tl (tl rr)))}} ∪
{mk-Horse(n, [UNPLACED] s, g) | mk-Horse(n, s, g) ∈ hrs ∙
n ∈ ((elems rr)\{hd rr, hd (tl rr), hd (tl (tl rr)), hd (tl (tl (tl rr)))\})

At this point we notice that the size of VDM post-conditions may start to be a problem. We will use two techniques to alleviate this: user-defined functions, introduced in the next chapter, and the let construct, introduced below. These methods can be used to factor out and decompose conditions in such a way that they not only look neater, but are also easier to understand.

Let E be an expression occurring within a larger expression (such as a large post-condition). The let construct allows us to evaluate E and bind that value to a variable name. Wherever E occurs in the larger expression, the variable name can be put in its place. Its full form in VDM is more general than this, possible involving pattern matching, but the syntax that will be used here for the let clause is:

let variable_name = expression in large_expression

The let construct can be nested, so that large_expression above could itself start with a let construct.

For example, the UPDATE operation can be restated thus:

UPDATE (meeting : Race, rr : Race_result)

ext wr hrs : Horse-set
wr rcl : Races_left

pre len rcl > 0 ∧ meeting = hd rcl ∧ len rr > 3

post let stf_set = {hd (tl rr), hd (tl (tl rr)), hd (tl (tl (tl rr)))} in
let last_lot = (elems rr)\{hd rr, hd (tl rr), hd (tl (tl rr)), hd (tl (tl (tl rr)))\} in
rcl = tl rcl ∧
hrs = \{x | x ∈ hrs ∙ x.name ∉ elems (rr)\} ∪
{mk-Horse(n, [WINNER] s, g) | mk-Horse(n, s, g) ∈ hrs ∙ n = hd rr}\} ∪
{mk-Horse(n, [PLACED] s, g) | mk-Horse(n, s, g) ∈ hrs ∙ n ∈ stf_set}\} ∪
{mk-Horse(n, [UNPLACED] s, g) | mk-Horse(n, s, g) ∈ hrs ∙ n ∈ last_lot}
4.4.4 Proof Obligations

The proof obligations for these operations turn out to be easy. Neither disturbs the relationship between jockey and horse, so the invariant is preserved. The existence of an output state in UPDATE is guaranteed, in essence, by the explicit nature of the post-condition - one can always evaluate the output state components given an input state.

Exercises 4.3

1. Assuming the current state of the Stable is H2, use the definition of UPDATE to calculate a new state after the results of the next race are known:

 \[
 \begin{align*}
 &meeting = NEWCASTLE \\
 &rr = [\text{[PROOF, ASSISTANT]}, \text{[MR, WHIPPY]}, \text{[LEGINSKY]}, \text{[SHERBAR]}, \text{[RED, WINE]}]
 \end{align*}
 \]

2. Specify an operation NUM_RACES_LEFT which outputs the number of races left in the season.

3. Extend the data type invariant to include the assertion “No horse has the same name as a jockey”.

4. When the stable acquires a new horse its favourite 'going' is determined, then its details are added to the system (initially it has no race record, so its 'pos' value will be the empty sequence). Given the specification heading is:

 \[ADD_NEW_HORSE(hname : Token, fgoing : Going)\]

 complete the specification of this operation.

4.5 The Map Data Type

4.5.1 Intuitive view of maps

VDM maps are data structures associating two sets of values, where each set is a subset of a predefined type. This association is a special kind of relation in that one set is called the domain of the map, the other the range, and every element in the domain is associated with exactly one element in the range. Maps were introduced as mathematical objects in sections 2.4 and 2.5., but here we view them as a VDM built-in data type just like the Set or Sequence.

Assume Person and Age are pre-defined types. Declaring two state component variables (or operator parameters) how_old and left_school as maps associating values in Person with values in Age, is written as follows:

\[
\begin{align*}
&\text{how_old : Person} \rightarrow\!\!\rightarrow \text{Age} \\
&\text{left_school : Person} \rightarrow\!\!\rightarrow \text{Age}
\end{align*}
\]
Let us assume that these maps give someone's current age and the age someone left school, respectively. The declarations tell us that the domain of maps _how_old_ and _left_school_ is a set of values from the type _Person_, their range is a set of values from the type _Age_ and their map-type is _Person_ → _Age_. An explicit representation for a map is allowed in VDM, the associated elements being simply listed together. Assuming _Person_ and _Age_ values are represented by tokens and numbers respectively, instances of our example maps could be:

\[
\text{how
dd_old} = \{ \text{BOB} \mapsto 18, \text{FREDA} \mapsto 20, \text{JIM} \mapsto 18 \}
\]

\[
\text{left_school} = \{ \text{FREDA} \mapsto 16, \text{JIM} \mapsto 18 \}
\]

Each association in a map is called a _maplet_, so _how_old_ contains three maplets and _left_school contains two. The potential for using a mapping as a data structure can be seen by considering its major characteristic: every element in its domain is mapped to exactly one element in its range. Objects that display this property can be usefully modelled by maps - maps intrinsically hold the 'functional relationship' that is natural in some problems. Thus in the examples above, the map tells us that the current age of a person is unique (no person can have two ages) and that the school leaving age of a person is unique. This is akin to the use of _keys_ in databases - we want the data that a key allows us to access to be functionally dependent on it. We will see later that the use of maps tends to simplify data type invariants, since the functional relationship is held implicitly in the map.

A similar data structure to the Map is the familiar _array type_, used in most programming languages. There is a correspondence between them as follows:

array variable – _map name_

array index – _map domain_

array range – _map range_

For example, suppose that _Age_ and _Person_ had been suitably declared as types in a Pascal-like Language. Declaring two Pascal array variables corresponding to our maps _how_old_ and _left_school_ would be written as:

\[
\text{how_old : array[Person]}\ of\ Age\ left_school : \text{array[Person]}\ of\ Age
\]

In fact, the Map type is more abstract and general than the array. Arrays that feature in Pascal-like programming languages have at least the restriction that their index-type be ordinal; this condition may be stricter depending on the implementation language. The array concept was originally a machine-oriented idea, because it reflected the sequential storage arrangement in digital computers. Maps in VDM, on the other hand, have no restrictions on the types they are made up from, and they reflect the mathematical notion of a map.

4.5.2 Map Operations

In the section above we described how the user can declare and explicitly represent maps, given an explicit representation for their component types. As with the other VDM types,
the Map has associated with it various well defined, primitive operations, some of which we list below:

- **dom** and **rng**: **dom** takes a map and returns the set of domain values that the map is defined on, and **rng** returns the set of values that are mapped to, in the range. For example:

 \[
 \text{dom} \ how_old = \{\text{BOB, FREDA, JIM}\} \\
 \text{dom} \ left_school = \{\text{FREDA, JIM}\} \\
 \text{rng} \ how_old = \{20, 18\} \\
 \text{rng} \ left_school = \{16, 18\}
 \]

- **map application**: given a map \(f \) and a domain value \(v \), map application returns the corresponding range value, written \(f(v) \). For example:

 \[
 how_old(\text{BOB}) = 18 \\
 left_school(\text{FREDA}) = 16
 \]

- \(\uparrow \) : This is termed 'overwrite' (recall it was introduced in chapter 2, exercise 2.17). It is an infix operator which manipulates two maps, say \(f \) and \(g \), to produce a third map written \(f \uparrow g \). The map \(f \uparrow g \) is identical to \(g \) with one exception: on domain values where \(g \) is not defined, \(f \uparrow g \) is identical to \(f \). Sometimes \(f \uparrow g \) is described as the map \(f \) overwritten by \(g \). The two arguments of \(\uparrow \) must be of the same Map type, meaning \(f \) and \(g \) must have the same domain and range types. For example:

 \[
 how_old \uparrow left_school = \{\text{FREDA} \mapsto 16, \text{JIM} \mapsto 18, \text{BOB} \mapsto 18\} \\
 left_school \uparrow how_old = \{\text{FREDA} \mapsto 20, \text{JIM} \mapsto 18, \text{BOB} \mapsto 18\}
 \]

 Note that

 \[
 left_school \uparrow how_old = how_old
 \]

 because

 \[
 \text{dom} \ left_school \subseteq \text{dom} \ how_old
 \]

- **map equality**: Two maps, \(f \) and \(g \), are equal if and only if they have the same domain and their application on every domain element is identical. This can be expressed formally as:

 \[
 f = g \iff \text{dom} \ f = \text{dom} \ g \land \forall x \in \text{dom} \ g \cdot f(x) = g(x)
 \]

Given these operations, the characteristic of any map \(f \) can be summed up by the logic condition:

\[
\forall a, b \in \text{dom} \ f \cdot a = b \Rightarrow f(a) = f(b)
\]

There are more operations associated with the Map type, notably **map comprehension** which is similar in operation to the set comprehension technique. Rather than introducing ‘excess baggage’ for the sake of it, we move on to some examples.
Example 4.1

Assume we are trying to model the state of execution of a program written in a simple language which has only a variable store and no explicit type declarations (as in some old dialects of the Basic programming language). Variable identifiers can be defined in VDM as tokens:

\[\text{Identifier} = \text{Token} \]

For variables' values we will use the Natural numbers:

\[\text{Vals} = \mathbb{N} \]

Then any program store, during program execution, can be represented as a mapping between the identifiers and their values:

\[
\text{state Program_store of }
\begin{align*}
\text{store : Identifier} & \rightarrow \text{Vals} \\
\end{align*}
\text{end}
\]

At the start of any program, we could assume that each identifier is zero, and model this with an operation \text{INIT}:

\[
\text{INIT} ()
\begin{align*}
\text{ext wr store : Identifier} & \rightarrow \text{Vals} \\
\text{pre} & \text{ true} \\
\text{post} & \forall i \in \text{dom} \text{ store} \cdot \text{store}(i) = 0
\end{align*}
\]

Now we can model a basic command in the programming language. Consider a simple assignment statement which is of the form:

\[x := y \]

where both \(x \) and \(y \) are identifiers. The operation for this could be written:

\[
\text{ASSIGNMENT} (x, y : \text{Identifier})
\begin{align*}
\text{ext wr store : Identifier} & \rightarrow \text{Vals} \\
\text{pre} & \text{ true} \\
\text{post} & \text{store} = \text{store} \uparrow \{ x \mapsto \text{store}(y) \}
\end{align*}
\]

Exercises 4.5

1. Write an operation which specifies the assignment of a variable to a number.

2. Write an operation for performing \textit{multiple assignments} in the language. This would correspond to the action of the statement \(x, y := u, w \) on the state, for identifiers \(x, y, u \) and \(w \). You may assume that this has the same effect as the composition \(x := u; y := w \).
4.6 The Symbol Table

We will finish this chapter with a worked example which serves to show the use of the four main data structures in VDM: Sets, Sequences, Composites and Maps. Rather than showing the specification as a fait accompli, in which readers may be lost as to how the creators came to arrive at a particular representation, we will try to show a little of the mental process involved in specification construction.

4.6.1 Requirement

A common module required for a program compiler is a symbol table, a data structure which holds the attributes of all the identifiers in scope at a point in the text of a block structured program. Attributes of an identifier might denote whether it is a program variable, a constant or a function. If it is a variable, a further attribute would be its type. After reading the declaration:

```pascal
var x : integer;
```

in a Pascal program the compiler may update the symbol table with the information that identifier x has been declared as a variable, and is of type integer. During the execution of the compiler, the state of the symbol table will be affected by various operations, as the focus of the compiler moves through the program text. In general, the following five operations are required (this example is inspired by Guttag’s algebraic specification of a symbol table in [Guttag 77]):

(a) INIT: set up a new symbol table

(b) ENTER BLOCK: add a new scope to the program’s block structure

(c) ADD: add an identifier and its attributes to the current block

(d) LEAVE BLOCK: discard the most current scoping block

(e) RETRIEVE: retrieve the attribute(s) of an identifier from the innermost declaration

4.6.2 Creation of a System State: First Attempt

Despite the order in our phased method of specification construction, it is always a good idea to keep in mind the operations required when deciding on a suitable data representation. We may still need several attempts before we arrive at the final one, however. The reader should not be deterred by this: the larger the application, the more trial and error is required to discover an appropriate representation. Considering the operations required, we might proceed along the following lines:

- A program’s block structures can be nested to an arbitrary depth. Ordering of blocks is important (since the same identifier can be declared in more than one block) with the most recent declaration being the significant one. This suggests we
use a Sequence type, with block declarations being added or removed from one end of the sequence, in a first-in-first-out manner, rather like a stack.

- In a particular block, we can declare an arbitrary number of identifiers. The declarations do not have to be in any particular order, for example, in Pascal:

 \[
 \text{var } x : \text{real}; \ y : \text{integer} \\
 \text{means the same as} \\
 \text{var } y : \text{integer}; \ x : \text{real}
 \]

 Also we need to avoid repeated elements, so this suggests we use the Set type for each block.

- We require a structure to hold the identifier name and attributes, which will be retrieved by operation (e): since we need a fixed size structure with two components of different types, this suggests we use the Composite type.

VDM allows us to leave out the unnecessary details (at this stage) of what constitutes the type Identifier and Attribute. This is a useful form of abstraction, and helps to give specifications a more ‘top-down’ flavour. We need to give some concrete examples, however, so in the symbol tables given below, we have assumed:

\[
\begin{align*}
\text{Attribute} & = \text{REAL} \mid \text{CHAR} \mid \text{INTEGER} \\
\text{Identifier} & = \text{Token}
\end{align*}
\]

A first attempt at the symbol table representation is then:

\[
\text{symbol_table} = \text{sequence of sets of identifier-attribute pairs}
\]

or in VDM syntax,

\[
\begin{align*}
\text{Pair} & :: \text{id : Identifier} \\
 & \quad \text{att : Attribute} \\
\text{Block} & = \text{Pair_set} \\
\text{Symbol_table} & = \text{Block}^\ast
\end{align*}
\]

\[
\begin{align*}
\text{state} & \text{ Program_info of} \\
& \quad s : \text{Symbol_table} \\
\text{end}
\end{align*}
\]

To summarise, each set in the sequence represents a group of identifiers declared in a block, the left hand sets being the inner-most, and the last of the sequence being the outer-most block. Any sequence of sets of pairs, where pairs are made up from a valid identifier and attribute, is then a state of this system model.

For example:

\[
S1 = \{\text{mk-Pair}(x, \text{INTEGER}), \text{mk-Pair}(y, \text{CHAR}), \text{mk-Pair}(z, \text{REAL})\}\]
is a valid instance of the symbol table. It represents the declarations of one real variable x within the outer block, and integer and char variables x, y within an inner block, of some notional program:

```plaintext
program exampleS1;
var x : real;
...
    procedure fred;
        var x : integer; y : char;
        ....
        †
        end;
    ....
end;
```

$S1$ describes the scope of variables in the block at point †. But consider the following:

$$S2 = \{ mk-Pair(x,INTEGER), mk-Pair(x,CHAR) \}, \{ mk-Pair(z,REAL) \}$$

This is a symbol table allowed by the model, but obviously violates the rules of a Pascal-like language, as can be seen by its program illustration:

```plaintext
program exampleS2;
var z : real;
...
    procedure fred;
        var x : integer; z : char;
        ....
        †
        end;
    ....
end;
```

At this point we may move into the second phase of our systematic method and start to develop a data-type invariant inv to restrict the type, so that $inv(S1)$ would be true but $inv(S2)$ would be false. Instead, we shall shift the representation to fit the problem more fully, and leave this line of development to an exercise below.

4.6.3 Creation of the System State: A better attempt

As is often the case when creating VDM specifications, we may shorten or simplify inv by choosing a more apt representation. We noticed above that each declaration in the block consisted of two components: an identifier, and its attributes. The symbol table model
can be simplified by incorporating the constraint that the attributes of an identifier are *functionally dependent* on it (that is each identifier has at most one lot of attributes). This can be done using a Map type to model the set of declarations in a block, and so we have:

symbol_table = sequence of (Identifier to Attribute maps)

or in VDM syntax,

\[
Block = \text{Identifier} \mapsto \text{Attribute}
\]

\[
\text{Symbol_table} = Block^*
\]

\[
\text{state } \text{Program_info of}
 \begin{align*}
 s : \text{Symbol_table} \\
\end{align*}
\]

end

S2 would not then be a valid data structure. S1 would be represented as a sequence of two maps:

\[
S1 = [\{x \mapsto \text{INTEGER}, y \mapsto \text{CHAR}\}, \{x \mapsto \text{REAL}\}]
\]

4.6.4 Construction of the Data Type Invariant

The need for a data type invariant has been avoided by the map representation chosen above. Thus this representation is a good fit for the problem.

4.6.5 Modelling of the Operations

Now we need to construct the operations with respect to the requirements outlined in the first section. The following operations are straightforward:

INIT’s post-condition states that the new symbol table is modelled by the empty sequence.

ENTER_BLOCK has the effect of adding a new, empty block, denoted by the empty map \{
\}→, to the front of the block sequence. Its post-condition must state that this empty map is the head of the sequence of which the old symbol table is the tail.

LEAVE_BLOCK is an operation which discards all the declarations in the current block. The output symbol table will therefore be the old table with its most current block (that is the map at the \textbf{hd} of the sequence) removed.

\[
\text{INIT}()
\]

\[
\text{ext wr } s : \text{Symbol_table}
\]

\[
\text{pre } \text{true}
\]

\[
\text{post } s = []
\]
\textbf{ENTER_BLOCK ()}
\textbf{ext wr s : Symbol_table}
\textbf{pre true}
\textbf{post s = \{[i \mapsto] \}\ - s}

\textbf{LEAVE_BLOCK ()}
\textbf{ext wr s : Symbol_table}
\textbf{pre s \neq []}
\textbf{post s = tl s}

The \textit{ADD} operation has two pre-conditions: the symbol table must not be empty (otherwise there would be no block to \textit{ADD} to) and the identifier to be added must not have already been declared in that block. In the post-condition, the new state is the same as the old except that the new 'maplet' \{i \mapsto a\} is added to the map at the front of the sequence, representing the current block's symbols.

\textbf{ADD (i : Identifier, a : Attribute)}
\textbf{ext wr s : Symbol_table}
\textbf{pre s \neq [] \land i \notin \text{dom (hd s)}}
\textbf{post s = [(hd s) \uplus \{i \mapsto a\}] - tl s}

The final operation, \textit{RETRIEVE}, inputs an identifier value \(i\) and outputs an attribute value \(a\). Note that:

- The pre-condition must check that \(i\) is actually declared somewhere in the block structure.

- The post-condition must specify that \(a\) is taken from the innermost block in which \(i\) is declared. To state this we use a function \textit{get_from_table}, which searches through the sequence of blocks \(s\) starting from the head of the sequence (we take the liberty of introducing a function before the next chapter, where they are discussed at length).

- Each element of the \textit{Symbol_table} sequence \(s\) is a map. Applying the head of the sequence \(s\) to an identifier \(i\), we obtain \(i\)'s corresponding attribute \(a\). We use the notation \((\text{hd } s)(i)\) for this form of map application below. For example, using the symbol table called S1 generated from the program exampleS1 above, \((\text{hd } S1)(\gamma)\) would produce the result \texttt{CHAR}.

The function definition is thus:

\[\text{get_from_table : Symbol_table \times Identifier \rightarrow Attribute}\]

\[\text{get_from_table } (s, i) \triangleq\]
\[\begin{cases}
\text{if } i \in \text{dom (hd s)} & (\text{hd } s)(i) \\
\text{then (hd } s)(i) & \text{else get_from_table} (\text{tl } s, i)
\end{cases}\]
and finally the operation RETRIEVE is defined using get_from_table:

```
RETRIEVE (i : Identifier) a : Attribute
ext rd s : Symbol_table
pre \exists b \in \text{elems} s \cdot i \in \text{dom} b
post a = get_from_table(s, i)
```

4.7 Summary

This chapter introduced two more VDM data structures, the Sequence and the Map. We used both the Stack, the Stable, and the Symbol_table examples to illustrate the phases involved in producing specifications.

- In the Stack example, we introduced the idea of reasoning with specifications;
- In the Stable example, we showed how data structures can be built up, and how the let clause could be used to structure post-conditions. The use of sequences and the set comprehension technique were also practised.
- In the Symbol_table example, we specifically tried to show the kind of process that the reader might initially go through in creating specifications (after more practice, of course, one would probably make the correct choices first time!).

Additional Problems

Problem 1. A particular Symbol Table consists of:

- an outer block declaring two real variables \(x \) and \(y \)
- an inner block declaring two integer variables \(z \) and \(y \)
- an inner, inner block declaring two character variables \(x \) and \(z \)

Represent this explicitly as a structure using both specification models discussed in section 4.6.

Problem 2. Removing the need for a data type invariant alleviates the proof obligations to the extent of making condition 3.4 redundant. Check that each symbol table operation that we have designed satisfies condition 3.3.

Problem 3. Write the five operations on the symbol table given the initial representation. Create a data type invariant which will exclude blocks containing an identifier declared more than once.

Problem 4. Specify a stack without a size limit, called an unbounded stack, in VDM (the answer to this exercise is given in chapter 9).

Problem 5. Write an operation called UPDATE3 for the Stable application which performs the same operation as the original UPDATE, except that its input is only allowed to contain a race result containing three or less horses.
Problem 6. Specify another two operations for the Stable application:

(i) \textit{FJOCKS}: outputs a set of the names of all the female jockeys in the stable.

(ii) \textit{SEASON_INIT}: initialises the Stable information system at the beginning of the season. Actual jockeys and horses do not change, but the form of all the horses is empty, and a new sequence of races should be input.

Bibliography

Chapter 5

Building Up VDM Specifications

5.1 Introduction

In this chapter we discuss specifications of functions, which can be used as components for larger specifications in VDM. In the second half of this chapter one such component, a bounded, strong partial order, is constructed. It is then used a building block for the case study in chapter 6. The process of creating larger specifications requires intellectual and notational tools not unlike those used in programming. One must decompose the specification sensibly, and it is essential that the specification language itself has notational devices to support this. Abstraction, like decomposition, is another intellectual tool, where one concentrates on certain aspects of a specification while suppressing the details of other parts.

Of great importance in programming is the module concept, which helps in both decomposition and abstraction. A module construction (sometimes called a Package or Class as well as Module) provides an intermediate structuring device between the program and procedure levels. It is used best to encapsulate a bundle of procedures implementing operations on a data type. The advantage of this is that the module's well defined interface can keep the data type it encapsulates secure and maintainable. A similar structuring device to the module can also be used at the specification level, to help in decomposition and abstraction, and such a device is at the heart of the Algebraic Approach described in the second part of this book. The VDM-SL standard also includes a module construct, allowing operations within a module to have their own local system state (for an introduction the interested reader can consult chapter 9 in [Jones 90]). Although this brings the advantage of having a structuring device above the operation level, it also introduces problems of its own to do with extra notation and complexity.

Rather than using a module device which allows localised states, we will adopt a simpler approach, creating new data structures only with the use of functions. In other words, our building blocks will take the form of data structures which, while grounded in the VDM primitive data structures, are constructed and accessed by pure functions.
5.2 User-Defined Functions

It is often convenient to structure and simplify specifications with user defined functions. For example, in the symbol table example of chapter 4 we created a user-defined function `get_from_table` which searched through the symbol table for a particular identifier. The post-condition of `RETRIEVE` determined the value of its output parameter as the result of function `get_from_table`.

In the last two chapters we have seen the method of building up and accessing a data structure, representing a state, using operations on the state. Instances of the state are identified with the values of a composite data structure. In this chapter we will temporarily abandon the idea of a VDM state, and the reader should see that using only functions, one can build up the whole specification of a data structure. After all, the VDM state was only introduced as a convenience, and is best employed in an application where operators access part of a complex state, leaving the rest unchanged. To translate a specification into one consisting only of functions, one needs to do little more than represent the external state with input and output state parameters (although there are some complications which we shall see later when we re-examine the definition of functions). The `Symbol_table`'s operations can all be re-expressed as functions, for instance the `ADD` operation would be:

\[
\begin{align*}
ADD & (i : \text{Identifier}, a : \text{Attribute}, s_{\text{in}} : \text{Symbol_table}) s_{\text{out}} : \text{Symbol_table} \\
\text{pre} & \ s_{\text{in}} \neq [] \land i \notin \text{dom} (\text{hd} \ s_{\text{in}}) \\
\text{post} & \ s_{\text{out}} = [(\text{hd} \ s_{\text{in}}) \uparrow \{i \mapsto a\}] \sim (\text{tl} \ s_{\text{in}})
\end{align*}
\]

The input and output states are here represented as the input and output parameters `s_{\text{in}}` and `s_{\text{out}}`.

Within their pre- and post-conditions, VDM operations cannot have references to (or call) other operations which are not functions. The reason for this was explained in section 3.5.3: conditions are logical formulae, which, given values for their parameters, are meant to evaluate to true or false. Operations which may as a side effect change the system state should not therefore appear in these logical formulae. Thus larger specifications should be structured using function calls within their pre and post-conditions. In particular, if a structured data type is to be used as a building block for a specification, then functions must be used to construct, manipulate and access the type.

5.2.1 Function Definitions in VDM

Mathematical functions were introduced in chapter 2: here we remind the reader of their two defining characteristics, since functions in VDM must also conform to them. Given that a function has a number of typed arguments (represented by parameters) which are supplied with values, the following two properties are always true:

- a function evaluates to (or returns) a unique, single value of a pre-determined type;
- the value a function returns depends only on the values of its arguments.
Functions can be thought of as operations which do not access an external state, and which have exactly output parameter whose value is unique for any given set of input values.

In VDM there are two ways to define functions: *implicitly*, or *explicitly*. Functions are implicitly defined in VDM in exactly the same way as operations, that is their output value is specified by stating a property or relationship that the value must satisfy. The definition must be restricted of course so that exactly one output parameter is used, and no external state is accessed. In this sense *functional* operations are simply a special case of the general operation idea.

The exponent example in section 3.2.1 is specified using an implicit function definition:

```
EXPONENT (x : Z, n : N) y : Z
pre true
post y = x^n
```

EXPONENT is a function because it returns one output value which is unique for a given set of inputs, and this output value is dependent solely on those inputs (that is *no external state is accessed*).

Now consider the definition of *INT_SQR*, another example from chapter 3:

```
INT_SQR (x : N) z : N
pre x ≥ 1
post (z^2 ≤ x) ∧ (x < (z + 1)^2)
```

Although *INT_SQR* has one output parameter and does not access an external state, it is not obvious that only one output value satisfies its post-condition for any given input parameter value. In fact in section 3.2.2 we provided just such a proof, one that showed z to be uniquely determined by the value of x, and the fact that *INT_SQR* specifies a function follows.

Exercises 5.1

1. Exercise 4.2, No 3 asked you to re-specify the *Stack* type without the use of an external state. Are all the *Stack* operations converted into functions this way? In particular, how can the *POP* operation be translated to a functional equivalent? (this problem is discussed further in chapter 8).

2. Compare the definition and use of functions as used in programming languages with the mathematical definition given above. In Pascal, for example, the value of a function may not depend solely on its parameter’s values; it could depend on the value of a *global* variable, or on values read from an external file. Can you see any other differences?

3. You may have noticed a similarity between map application in section 4.3 and function evaluation. Investigate the general connection between the *map* data structure and the function concept introduced above.
5.2.2 Proof Obligations for Implicitly Defined Functions

Implicit function specifications incur proof obligations on the specifier as do general VDM operations. One should check that the function’s post-condition can be satisfied - that is there exists a valid output value which makes the post-condition true, for any set of valid inputs which make the pre-condition true (where valid means of the correct type). In particular, a function which constructs a new value of a user defined data type should be checked to ensure that its output value always satisfies that data type’s invariant, if one exists (for example the explicit specification of ADD at the beginning of section 5.2 creates new symbol tables). One should also make sure that the post-condition is satisfied by exactly one value, for any set of valid inputs.

Adapting condition (3.1) of chapter 3, this idea is captured thus:

\[
\forall i_1, \ldots, i_n \in inputs \cdot pre-op(i_1, \ldots, i_n) \Rightarrow \exists! o \in output \cdot post-op(i_1, \ldots, i_n, o) \quad (5.1)
\]

where inputs is a list of the type names associated with each of the input parameters, and by \(\exists! o \) we mean there exists exactly one \(o \). Given a function defined by a post-condition which relates input to output in an implicit way (such as the INT_SQR post-condition), it may not be easy to show that the post-condition is satisfiable. Also, if the output type’s invariant is non-trivial, it may be necessary to adopt a two step argument to show that the output value satisfies its invariant (which is similar to verifying the truth of conditions (3.3) and (3.4) in chapter 3).

5.2.3 Explicitly Defined Functions

Explicitly defined functions are those for which we can use the definition to calculate an output, given input values for the function’s arguments. The explicit definition usually involves recursion, and is in a sense less abstract than an implicit definition. This is because there may be many ways of calculating an output value which satisfies the implicit definition’s post-condition. Explicit definitions therefore involve a commitment to a particular algorithm, and as such are close to implementations themselves.

The explicit function definition is separated into a signature and a meaning (in common with the Algebraic approach expounded later in this book, and with modern Functional Programming Languages). The signature has the form:

\[
function_name : input_types \to output_type
\]

If there is more than one type in the input then these will be separated by the ‘\(\times \)’ symbol. For example, the signature of get_from_table in section 4.4 is

\[
get_from_table : Symbol_table \times Identifier \to Attribute
\]
The meaning of a function is expressed on the right hand side of the ‘ Δ ’ sign, and the full form of a function definition is thus:

\[\text{function}_\text{name} : \text{input}_\text{types} \rightarrow \text{output}_\text{type} \]
\[\text{function}_\text{name} (\text{ins, out}) \triangleq \text{expression} \]

The expression may contain parameters, constants, built-in functions, predicates and user-defined functions. It can also take the form of a selection statement as follows:

\[\text{function}_\text{name} : \text{input}_\text{types} \rightarrow \text{output}_\text{type} \]
\[\text{function}_\text{name} (\text{ins, out}) \triangleq \]
\[\text{if } \text{boolean}_\text{expression} \]
\[\text{then } \text{expression} \]
\[\text{else } \text{expression} \]

In particular, the selection statement may be nested, and may involve recursion. The function \text{get}_\text{from}_\text{table} of chapter 4 is an example defined this way:

\[\text{get}_\text{from}_\text{table} : \text{Symbol}_\text{Table} \times \text{Identifier} \rightarrow \text{Attribute} \]
\[\text{get}_\text{from}_\text{table} (s, i) \triangleq \]
\[\text{if } i \in \text{dom} (\text{hd } s) \]
\[\text{then } (\text{hd } s)(i) \]
\[\text{else } \text{get}_\text{from}_\text{table}(\text{tl } s, i) \]

As another example, consider exercise 3.1 in which you were asked to create a specification of the \text{factorial} function. An explicit definition is:

\[\text{factorial} : \mathbf{N} \rightarrow \mathbf{N} \]
\[\text{factorial} (n) \triangleq \]
\[\text{if } n \geq 1 \]
\[\text{then } n \times \text{factorial}(n-1) \]
\[\text{else } 0 \]

5.2.4 Proof Obligations for Explicitly Defined Functions

For an explicitly defined function \(f \) which constructs a new value of a type, we are obliged to demonstrate that the data type invariant holds on every output value.

We can derive this result by considering a version of condition (5.1) which makes the invariant on the output parameter \(o \) explicit:

\[\forall i_1, ..., i_n \in \text{inputs} \cdot \text{pre-op}(i_1, ..., i_n) \Rightarrow \exists! o \in \text{output} \cdot \text{post-op}(i_1, ..., i_n, o) \land \text{inv}(o) \]

An explicitly defined function \(f \) does not have pre- and post-conditions as such, and
the value of \(a \) is given by function evaluation (applying the definition of \(f \) to the input values). The proof obligation in this case reduces to:

\[
\forall i_1, \ldots, i_n \in \text{inputs} \cdot \text{inv}(f(i_1, \ldots, i_n))
\]

(5.2)

If the function \(f \) involves recursion and selection, this expression is not straightforward to prove true. In particular, if \(f \) involves recursion, we should, strictly speaking, provide a proof that the recursion is going to eventually terminate, given any legal input values.

5.2.5 The Relationship between Implicit and Explicit Functions

Explicit function definitions can be thought of as implementations for a corresponding implicit definition. In fact, one path towards the proof of satisfiability of an implicitly defined function \(f_i \) is to create an explicit function \(f_x \) whose definition satisfies \(f_i \). This means that \(f_x \) must output a unique value which makes the post-condition of \(f_i \) true, for any values input which makes \(f_i \)'s pre-condition true (see figure 5.1).

The \(\text{EXPONENT} \) example of section 3.2 can be defined explicitly by function \(\text{exponent}_x \):

\[
\text{exponent}_x : \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Z}
\]

\[
\text{exponent}_x (x, n) \triangleq \\
\text{if } n = 0 \\
\text{then } 1 \\
\text{else } x \times \text{exponent}_x (x, n-1)
\]

In his most recent book on VDM ([Jones 90]), Jones devotes several pages to formally proving that explicit definitions satisfy implicit ones. Constructing such proofs needs a high degree of mathematical maturity on the part of the specifier: an in depth discussion is therefore beyond the scope of this book, but we do provide an example below.

5.2.6 An Inductive Proof

The general mathematical method for proving that an explicit function definition satisfies an implicit one is to use the induction technique on the input values of one of the parameters (see chapter 2 for an introduction). The procedure is to:

- prove that satisfaction holds for a base case.
- prove that if the satisfaction property holds for some arbitrary input value, then it will hold when that input value is incremented.

Having proved these two cases, the law of induction says that the satisfaction property holds for all values of the input.
figure 5.1: Explicit function fx satisfies implicit function fi
Understanding induction is easy if we relate it to the physical analogy of knocking down dominoes. Imagine a collection of dominoes standing up in a line, all close enough so that if one falls it will knock down its neighbour. If it was known that:

- someone was going to knock down the end domino in the direction of its neighbour;
- if any one of the dominoes were to fall, it would knock down its neighbour in the direction of fall,

then we would believe correctly that all the dominoes were going to fall down, no matter how many of them there were. The base case in induction corresponds to the end domino; the assumption that ‘the property we are trying to prove is true for an arbitrary value of the input type’ corresponds to the hypothesis that an arbitrary domino N was going to fall. Finally, proving that the property holds for an incremented value of the input corresponds to showing that N’s neighbour would fall also.

We will show that the explicit definition of EXPONENT satisfies our implicit definition by induction on its first parameter n and keep the other parameter x arbitrary. If a function has more than one input, then all inputs apart from the one chosen for induction must be kept arbitrary.

Keep in mind that the explicit definition is called \textit{exponent}_x, and the implicit definition is called EXPONENT.

First the \textit{base case}: from the explicit definition, if $n = 0$ then

$$\text{exponent}_x(x, 0) = 1$$

If we substitute this output value ‘1’ for the parameter ‘y’ which represents the output in the post-condition of EXPONENT, the condition evaluates to true and so is satisfied. Hence we have proved the base case.

For $n \geq 1$, using the definition of \textit{exponent}_x, its output is:

$$\text{exponent}_x(x, n) = x \times \text{exponent}_x(x, n-1) \quad (5.3)$$

Again if we substitute this output value $x \times \text{exponent}_x(x, n-1)$ for the parameter y in the post-condition of EXPONENT, and it evaluates to true, then we have proved satisfiability. With this substitution, the post-condition is:

$$x \times \text{exponent}_x(x, n-1) = x^n$$

Assume for the purposes of the induction proof that the explicit definition satisfied the post-condition for value $n-1$, that is

$$y = \text{exponent}_x(x, n-1)$$
satisfies the post-condition:

\[y = x^{n-1} \]

which implies:

\[x^{n-1} = \text{exponent}_x(x, n-1) \]

(5.4)

We now have to show the truth of the result for \((n-1)\) implies the truth of the result for \(n\). Using equation (5.4) to substitute \(x^{n-1}\) for \(\text{exponent}_x(x, n-1)\) in equation (5.3), we have:

\[x \times x^{n-1} = x^n \]

which evaluates to true by the properties of exponentiation and the fact that we have assumed \(n \geq 1\). It follows that, since the result is true for \(n = 0\) (the established base case), it is also true for \(n = 1\). Since it is true for \(n = 1\), it must be true for \(n = 2\) \ldots and so on.

5.2.7 Induction and Proof Obligations

In the last section, if the data type of the input parameter was other than \(\mathbb{N}\), induction can still be used in a generalised form called *structural induction*. We will return to this topic in chapter 12, since the principle of mathematical induction is also used in discharging proof obligations for algebraic specifications.

The reader may also see the connection between induction and discharging the proof obligation of condition (3.4). Setting aside the problem of existence of an implementation of an operator’s specification, in discharging the proof obligations we are effectively performing a kind of inductive argument that a property is true for all instances of the state that can be generated. In this case the property we are trying to prove for all instances is one other than the state invariant (i.e. the state's data type invariant).

The assumption that the pre-condition and the state invariant on the input state is true for an operator \(OP\), is similar to the inductive assumption that the ‘property holds for \(n-1\)’. Proving it follows that the invariant is true on the output state generated by \(OP\) is therefore akin to the induction step of proving that ‘the property holds for \(n\)’. The essential connection is that while ‘\(+1\)’ generates the next value in type \(\mathbb{N}\), \(OP\) generates the ‘next’ value of the VDM state.

Exercise 5.2

Write an explicit definition for \(INT_SQR\). Show by induction on its input value that it satisfies the implicit definition (an answer to the first part of the question is given at the beginning of chapter 6).
5.2.8 Partial Functions

A total function is one which is defined for all argument values which satisfy its type definition; in other words, for every value in the domain type of the function, there is a corresponding (unique) range value. A partial function is one which is undefined for some values of its input type (see section 2.6.4). If an implicit function has a pre-condition (other than ‘true’) then it is a partial function, and the result of calling the function with parameter values that do not satisfy the pre-condition is undefined. The definition of \textit{INT_SQR} is an example of a partial function since it is undefined for \(n = 0 \).

The problem with partial functions is that as functions, they are allowed to appear in expressions in other function definitions, and in pre- and post-conditions of operations. The question then arises, how do they evaluate in an expression if the binding of values to parameters makes their pre-condition false?

To avoid functions that can return 'undefined' values, one might conjecture that the types of the parameters could be designed and constrained so that the function is total. This solution relies on the designer to 'push the pre-conditions into the parameter type definitions'. We could easily make \textit{INT_SQR} a total function this way:

\[
\text{positive_nums} = \mathbb{N}
\]

\[
\text{inv positive_nums}(n) \triangleq n > 0
\]

\[
\text{INT_SQR}(x : \text{positive_nums}) z : \mathbb{N}
\]

\[
\text{pre } x \geq 1 \quad \text{post } (z^2 \leq x) \land (x < (z + 1)^2)
\]

The flaw with this approach is that the 'undefined-ness' of the function may depend on two or more of its parameters rather than one as in this example. These two or more parameters would have to be merged into one by putting their types together in a composite, allowing a suitable data type invariant to be put on the composite. This data type invariant would effectively do the job of the pre-condition of the operation. In general though, this process proves messy and unnatural.

In fact VDM has associated with it a 'Logic of Partial Functions' (called LPF) which allows logical expressions three values: true, false and undefined. 'undefined' is the value returned if the function's pre-conditions are not met. This can be used to give expressions involving partial functions a sound semantics, but in the general field of formal specification it is a not a standard solution. In this book our aim is to allow the reader to take a first step towards constructing sound specifications, hence we will sidestep this controversial issue by insisting that functions are defined total whenever possible. In cases where this proves awkward, a partial function may be defined but its use in other specifications will incur an extra proof obligation:

\textit{Wherever a partial function is used in an expression, it should be shown that any possible assignment of values to its parameters results in a function call which satisfies its pre-conditions.}
5.3 The Specification of a Partial Order

5.3.1 Weak and Strong Partial Orders

A sequence is sometimes called a total ordering because all its elements are in a strict linear order (although the use of total to describe orderings should not be confused with its use in describing functions, as in total function). A set with an ordering on its elements in which some but not necessarily all the elements are ordered, is called a partially ordered set or a poset. As a motivating example for the application of posets (and as grounding for our Case Study in chapter 6), we will use a poset data structure to represent the necessary ordering of actions in a simple home decorating plan. Figure 5.2 shows a graphical representation of an example plan structure, a plan to paint a wall, a ceiling and a ladder. Nodes in this partial order represent the execution of actions, and arcs represent a temporal precedence between two actions. This example will be referred to as the 'Painting World'.

The actions in the figure are constrained by the minimum ordering necessary to ensure that all the action's pre-conditions are achieved, and no goal achieved by one action is undone by the effects of another. For example, if we painted the ceiling after painting the ladder, we may well find ourselves having to repaint the ladder later. Programs that reason with actions to produce such plans are called automatic planners. In the next chapter we will specify an automatic planning program which relies on a partial order, such as this one, as one of its data structures. In fact, the 'Painting World' is formalised in Exercises 6.2.

In section 2.3.3 the idea of a weak partial order was introduced and defined by the axioms of transitivity, reflexivity and anti-symmetry. A weak poset is characterised by the reflexivity axiom, that is the statement 'x is ordered before x' is always true. A typical weak poset is the natural numbers with '≤' as the ordering relation. Within this model, 'n ≤ n' is true for all n ∈ N.

In the Painting World, the poset relation is one of time, and the things it relates are actions. We can call the relation informally 'is before': thus it is true in figure 5.2 that \textit{get.paint} is before \textit{paint.ladder}, but it is not true that \textit{paint.ceiling} is before \textit{get.paint}. Unfortunately, a collection of actions with the ordering relation 'is before' is not a model which fits the weak poset theory because of the reflexivity axiom: this would assert

'for all actions x, x is before x'

and as we know, actions are not executed before themselves! In fact we want 'action x is before action x' to be false for all actions.

Instead this model fits what is called a strong partial order, which is defined by the axioms of transitivity and irreflexivity. If 't' stands for the strong poset relation then these axioms are:

\[
\forall x \in S \cdot \neg t(x,x) \text{ (irreflexivity)}
\]
\[
\forall x, y \in S \cdot t(x,y) \land t(y,z) \Rightarrow t(x,z) \text{ (transitivity)}
\]

As shown in figure 5.2, the partial order can be visualised as a special kind of directed
graph consisting of nodes and directed arcs. In such a diagrammatic interpretation, the mathematical axioms make the graph ‘acyclic’, meaning that one cannot start at a node, follow the directed arcs, and end up back at the same node.

5.3.2 A Plan as a Strong Partial Order of Actions

If we formalise the temporal ordering relation in the Painting World so that ‘x is before y’ is written $\text{before}(x, y)$, and let the set of possible nodes in the poset be denoted Actions, then these axioms can be re-written:

$$\forall x \in \text{Actions} \cdot \neg \text{before}(x, x)$$
$$\forall x, y \in \text{Actions} \cdot \text{before}(x, y) \land \text{before}(y, z) \Rightarrow \text{before}(x, z)$$

Then, for two nodes x and y, the relation $\text{before}(x, y)$ is true if and only if:

- there is a directed arc connecting x to y; or
- there is a sequence of two or more arcs connecting x and y;

The action instances in the poset form a base set of nodes. Assuming that the base set is the following:

$$\{\text{get_ladder, get_paint, paint_ceiling, paint_ladder, paint_wall}\}$$

then the relational instances asserted true by figure 5.2 are given in set R below:
\[
R = \{ \text{before}(\text{get_ladder}, \text{paint_ceiling}), \text{before}(\text{get_paint}, \text{paint_ceiling}) \\
\text{before}(\text{get_ladder}, \text{paint_wall}), \text{before}(\text{get_paint}, \text{paint_wall}) \\
\text{before}(\text{get_ladder}, \text{paint_ladder}), \text{before}(\text{get_paint}, \text{paint_ladder}) \\
\text{before}(\text{paint_ceiling}, \text{paint_ladder}), \text{before}(\text{paint_ceiling}, \text{paint_wall}) \}\n\]

In mathematics such objects as posets tend to be static, whereas in computing we need to build up and manipulate them dynamically, during the course of program execution. Likely requirements for changing a poset might be the addition of an arc from some node \(x\) to some node \(y\), or the addition of more elements into the base set. In the Painting World the addition of such an arc corresponds to putting a temporal constraint between actions, and can be read as “\(x\) must occur before \(y\)”. Generally, the set of true relations \(R\) will change after arc addition, and exercise 1 below explores this in more detail.

Exercises 5.3

1. As in section 5.3.2 above, let the set of all relational instances asserted true in the Painting world be denoted \(R\). Would adding an arc from \(\text{get_ladder}\) to \(\text{paint_wall}\) change \(R\)? Under what conditions does adding an arc between nodes in a poset not change the set of relational instances such as \(R\)?

2. (a) Add an arc from \(\text{paint_wall}\) to \(\text{paint_ladder}\) in figure 5.2, and write down the set of true relational instances \(Q\) that the new directed graph now asserts.

 (b) Verify that \(R \subseteq Q\).

 (c) Now let \(P\) be the set of relational instances obtained by (legally) adding *any* arc to two nodes in the figure. Give reasons why the relation \(R \subseteq P\) is necessarily true.

3. This question follows on from exercise 2. A strong poset \(p\) can be said to define a *set* \(S(p)\) whose elements are sequences of all the nodes within the poset, and every sequence conforms to the ordering constraints in \(p\). That is:

\[
S(p) = \{ s \mid s \text{ contains the same nodes as the base set of } p \text{ and all the orderings in } p \text{ are preserved by } s \}\n\]

For example, all the orderings in figure 5.2 are preserved by the sequences:

\[
[\text{get_ladder}, \text{get_paint}, \text{paint_ceiling}, \text{paint_ladder}, \text{paint_wall}] \\
[\text{get_paint}, \text{get_ladder}, \text{paint_ceiling}, \text{paint_wall}, \text{paint_ladder}]\n\]

and hence these two sequences are members of this set. The sequence:

\[
[\text{get_paint}, \text{paint_ceiling}, \text{paint_ladder}, \text{get_ladder}, \text{paint_wall}]\n\]

is not a member of \(S(p)\) because it does not conform to all the relations imposed by the ordering, such as \text{before}(\text{get_ladder}, \text{paint_ceiling})\).

(a) Construct the whole set \(S(p)\) for the Painting World (you only need to find another two sequences as well as the two given above).

(b) Construct an argument showing that if an arc is added to \(p\) to make it into another ordering \(q\) (without introducing a cycle), then:
4. Prove that the anti-symmetry property:
\[\forall x, y \in S \cdot t(x, y) \Rightarrow \neg t(y, x) \]
is a logical consequence of the transitivity and irreflexivity axioms. Now show that, given transitivity and anti-symmetry, the irreflexivity property holds.

Exercise 4. shows that a strong partial order can be defined by the transitivity and irreflexivity axioms OR by transitivity and anti-symmetry.

5.3.3 Developing the Specification

Assume a module in a computer system is needed to create, store and update a strong partial order on a set of objects. To formally define the required poset we follow a modified method to the one in chapter 3, as introduced at the beginning of this chapter. We specify operations (to create partial orders) that are pure functions, in particular they do not access an external state.

In developing the specification we use the graphical nomenclature of nodes and arcs because it has a general but simple interpretation. The operations we require to build up the partial order are initialisation, node addition and arc addition. Node addition is required because it is conceivable that a node can be in the partial order, but not related to any of the other existing nodes. In developing a plan for the Painting World, we might add an action to the plan which could be executed in any position with respect to the other actions (such as 'make a cup of tea').

The three functions which we require to construct partial orders are:

- init_poset' - create the empty partial order;
- add_node' - add a new node to the base set of the partial order;
- make_before' - add an arc between two nodes x and y from the base set, to ensure x is before y.

Primes are used on the end of names to distinguish them from names used in an extension of this specification in section 5.5.

5.3.4 Creation of the Partial Order Data Type

A token set will suffice to represent the possible nodes in the partial order, although we will use lower case character strings to represent them. Consideration of the required operations add_node' and make_before' suggests that we represent nodes in the base set, and the arcs between them, in separate components. An arc between nodes is captured here using a composite type, whose first component is the node at the source of an arc, and the second is the node at the destination. The component types of the poset are thus:
Node = Token

Arc :: source : Node
dest : Node

A poset is defined as a composite of arcs and nodes:

Poset :: nodes : Node-set
arcs : Arc-set

Nodes that are not referenced in the Arc-set are assumed to be unordered.

5.3.5 The Data Type Invariant

One obvious invariant of our representation of a poset \(p \) is that all the nodes contained in the arcs component are also present in the base set, nodes:

\[
\{a.source \mid a \in p.\text{arcs}\} \cup \{a.\text{dest} \mid a \in p.\text{arcs}\} \subseteq p.\text{nodes}
\]

We also need to exclude any orderings allowed by this definition which are not valid partial orders. The type definition will therefore be constrained with an invariant which incorporates the strong partial order axioms. Using the result of exercise 5.3 no. 4, we let these axioms be transitivity and anti-symmetry.

In the graphical interpretation, the invariant will disallow cycles. Figure 5.3 shows an example of a relation which is not a partial order, as it contains a cycle and invalidates the anti-symmetry axiom.

To exclude orderings which contain cycles we phrase the invariant as follows:

"for any nodes \(x \) and \(y \), it cannot be the case that following a sequence of directed arcs we can get from \(x \) to \(y \) and following another sequence of directed arcs we can also get from \(y \) to \(x \)."

or more concisely:

"for any nodes \(x \) and \(y \), it cannot be the case that \(x \) is ordered before \(y \) and \(y \) is ordered before \(x \)."

The ‘is ordered before’ relation is defined via a function which, given two node identifiers \(x \) and \(y \), and an arc set, returns true if \(x \) is constrained by the ordering to be before \(y \), and false otherwise. This is identical to computing whether \(\text{before}(x, y) \) is in the set of relational instances asserted true by the poset’s graph (as explained in 5.3.2).

The function’s signature is as follows:

\[
\text{before} : \text{Node} \times \text{Node} \times \text{Arc-set} \rightarrow \mathbb{B}
\]

If there is an arc from node \(x \) to node \(z \) in arc set as then \(\text{before}(x, z, as) \) is true:

\(\text{mk-Arc}(x, z) \in as \Rightarrow \text{before}(x, z, as) \)
The \textit{transitivity} axiom gives us another way of finding out whether two nodes satisfy \textit{before}.

\[\exists y \in \text{get_nodes}(as) \cdot \text{before}(x, y, as) \land \text{before}(y, z, as) \Rightarrow \text{before}(x, z, as) \]

where \text{get_nodes} collects the set of nodes in an arc set:

\[
\text{get_nodes} : \text{Arc-set} \rightarrow \text{Node-set} \\
\text{get_nodes}(as) \triangleq \{a.\text{source} \mid a \in as\} \cup \{a.\text{dest} \mid a \in as\}
\]

Putting the two components of \textit{before} together, we arrive at a final definition:

\[
\text{before} : \text{Node} \times \text{Node} \times \text{Arc-set} \rightarrow \mathbf{B} \\
\text{before}(x, z, as) \triangleq \\
\text{mk_Arc}(x, z) \in as \lor \\
\exists y \in \text{get_nodes}(as) \cdot (\text{before}(x, y, as) \land \text{before}(y, z, as))
\]

In other words, \textit{x} is before \textit{z} if there is an arc from \textit{x} to \textit{z} or there is a sequence of arcs involving at least one intervening node \textit{y}. Our data type complete with invariant follows:

\[
\text{Poset} :: \text{nodes} : \text{Node-set} \\
\text{arcs} : \text{Arc-set} \\
\text{inv} \text{ mk_Poset}(\text{nodes}, \text{arcs}) \triangleq \\
\text{get_nodes}(\text{arcs}) \subseteq \text{nodes} \land \\
\forall x, y \in \text{nodes} \cdot \lnot (\text{before}(x, y, \text{arcs}) \land \text{before}(y, x, \text{arcs}))
\]
Exercise 5.4

1. Let \(p \) represent the poset in figure 5.2. Write down an explicit representation of \(p \) using the data type we have just constructed.

2. Another useful function we could define is called \texttt{possibly_before}. Given two nodes \(x \) and \(y \) in the base set, and a set of arcs \(as \), \texttt{possibly_before}(\(x, y, as \)) returns true if it is possible to add arc \(mk\text{-}Arc(x, y) \) to \(as \) without introducing a cycle into \(as \), and false otherwise. For example:

\[
\text{possibly_before (get_ladder, get_paint, as) is true}
\]
\[
\text{possibly_before (paint_ladder, get_paint, as) is false}
\]

where \(as \) represents the arcs in the poset in figure 5.2. The signature for the required function is:

\[
\text{possibly_before : Node \times Node \times Arc\text{-}set} \rightarrow \text{B}
\]

Write down the definition of \texttt{possibly_before} (hint: use the previously defined function \texttt{before}). If \(as \) has no cycles, and \texttt{before}(\(x, y, as \)) is true, what can you say about the truth of \texttt{possibly_before}(\(x, y, as \))?.

5.3.6 Modelling the Operations

The specification of the three constructors (that is those functions which construct posets) are now quite straightforward and require little explanation. The function \texttt{init_poset'} initialises the poset to be empty:

\[
\text{init_poset'} : \rightarrow \text{Poset}
\]
\[
\text{init_poset'} () \triangleq \text{mk\text{-}Poset}([], [])
\]

The operation \texttt{add_node} adds node \(u \) to the base set:

\[
\text{add_node'} : \text{Node} \times \text{Poset} \rightarrow \text{Poset}
\]
\[
\text{add_node'} (u, p) \triangleq \text{mk\text{-}Poset}(p\text{-}nodes \cup \{u\}, p\text{-}arcs)
\]

while \texttt{make_before'} adds an ordering of two nodes, \(u \) and \(v \), to the current partial ordering. To ensure that the poset remains valid, we must check that \emph{u can be put before v} without introducing a cycle. We do this using the \texttt{possibly_before} function of exercise 5.4 no 2.:

\[
\text{make_before'} : \text{Node} \times \text{Node} \times \text{Poset} \rightarrow \text{Poset}
\]
\[
\text{make_before'} (u, v, p) \triangleq
\]
\[
\text{if possibly_before}(u, v, p\text{-}arcs)
\]
\[
\text{then mk\text{-}Poset}(p\text{-}nodes \cup \{u, v\}, p\text{-}arcs \cup \{mk\text{-}Arc}(u, v))
\]

5.3.7 Proof Obligations

As we are dealing with explicitly defined functions, the proof obligation equation (5.2) will be employed.

Proof Obligation for init_poset:
The output value of `init_poset` is

\[mk-\text{Poset}([], []) \]

The invariant, bound to this value of the poset is:

\[\{ \} \subseteq \{ \} \land \forall x, y \in \{ \} \cdot \neg (\text{before}(x, y, \{ \}) \land \text{before}(y, x, \{ \})) \]

which evaluates to true.

Proof Obligation for make_before

We need to show that

\[\text{inv}(\text{if possibly_before}(u, v, p.\text{arcs}) \\text{then} \ mk-\text{Poset}(p.\text{nodes} \cup \{u, v\}, p.\text{arcs} \cup \{\text{mk-Arc}(u, v)\})) \]

is true, assuming `inv(p)` holds. In other words, given `possibly_before(u, v, p.\text{arcs})` is true, we need to prove:

\[\text{inv}(mk-\text{Poset}(p.\text{nodes} \cup \{u, v\}, p.\text{arcs} \cup \{\text{mk-Arc}(u, v)\})) \]

The first condition in the invariant is:

\[\text{get_nodes}(arcs) \subseteq \text{nodes} \]

where in this case:

\[\text{nodes} = p.\text{nodes} \cup \{u, v\} \text{ and } \]

\[\text{arcs} = p.\text{arcs} \cup \{\text{mk-Arc}(u, v)\} \]

The truth of the first condition follows, because:

\[\text{inv}(p) \]

\[\Rightarrow \text{get_nodes}(p.\text{arcs}) \subseteq p.\text{nodes} \]

\[\Rightarrow \text{get_nodes}(p.\text{arcs} \cup \{\text{mk-Arc}(u, v)\}) \subseteq (p.\text{nodes} \cup \{u, v\}) \]

It is not obvious or particularly easy to show formally that the second condition of the invariant is true:

\[\forall x, y \in \text{nodes} \cdot \neg (\text{before}(x, y, \text{arcs}) \land \text{before}(y, x, \text{arcs})) \]

but an informal argument will be used to show that it is the case. The second condition states that there is no sequence of connected arcs from one node to another in the partial order - we must show this is true of the poset output from `make_before`. We first need to state the definition of `possibly_before` (and hence the answer to exercise 5.4 no. 2) which is:
possibly_before : Node \times Node \times Poset \rightarrow B
\[\text{possibly_before}(x, y, p) \triangleq x \neq y \land \neg \text{before}(y, x, p)\]

From the definition of possible_before\((u, v, p.\text{arcs})\) we have
\[-\text{before}(v, u, p.\text{arcs})\]

which asserts that there is no sequence of connected arcs from v to u in the valid partial order p. Hence introducing an arc from u to v will not introduce a cycle going through these two nodes. If it introduced a cycle between u and another node z, then that cycle would have to go through arc v (if not the input ordering would not have been a valid poset), which contradicts what we have already established. Hence the new poset satisfies the data type invariant.

Exercises 5.5

1. Discharge the proof obligation for add_node'.

2. We will define a poset p to be a completion of another poset q if p and q contain the same set of nodes and

 for any nodes x and y, if x is ordered before y in q, then x is also ordered before y in p.

 Formally specify this relation between posets in VDM, giving it the following signature:

 is_completion_of : Poset \times Poset \rightarrow B

3. Inserting the arc before(get_ladder, paint_wall) to the poset represented in figure 5.2 is redundant as it does not change the poset. Modify the definition of make_before' so that it does not add superfluous arcs into the Poset data structure.

5.4 An Extension to the Specification

5.4.1 New Requirements

Let us now extend this specification by requiring a poset in which a special node is identified to act as the lower bound, and another node is identified to act as the upper bound of the ordering. In the Painting World plan, these special nodes could be two dummy actions init and goal which provide limits for the plan (see figure 5.4). We require that all nodes are ordered before goal apart from goal itself; and likewise init is ordered before every node apart from itself.

5.4.2 A New Data Model

There seems to be two main ways to create a VDM model which embeds this extension:
init | | | | goal |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>get_paint</td>
<td>paint_ceiling</td>
<td>--></td>
<td>paint_ladder</td>
<td>--></td>
<td></td>
</tr>
</tbody>
</table>

figure 5.4: The Painting World plan: A Partial Order with Bounds

- initialise the type by explicitly including the bound nodes in the base set and in
 the arc set. Every node subsequently added to the base set will have arcs from init
 and to goal added.

- leave the bound nodes init and goal implicit in the type (in other words do not
 include them in the poset’s representation), but change the functions on the poset
 to take them into account.

Choosing between such representations is not easy, and largely a matter of trial and error.
As a rule, an explicit representation tends to be more maintainable and transparent, al-
though less ‘efficient’, if considered from an implementation viewpoint. We will therefore
choose to develop the former here, and leave the implicit form as an exercise.

Changing to a bounded poset means that all nodes in the poset will have to be ordered
in some way, since every node must at least be ordered between the bounds. Thus the
set inequality on the poset’s components changes to an equality:

\[
g_{\text{nodes}}(\text{arcs}) = \text{nodes}
\]

This simplifies the poset representation, because it means that representing the base set
of nodes is superfluous. We define the bounded poset as simply:

\[
\text{Bounded-Poset} = \text{Arc-set}
\]

The invariant on the new bounded poset is initially simplified, because there is now only
one component in the data model. We must, however, assert the invariant properties of
the bounds init and goal:

\[
\text{inv } \text{mk-Bounded Poset}(p) \triangleq \forall x, y \in \text{get nodes}(p) \cdot \\
\neg (\text{before}(x, y, p) \land \text{before}(y, x, p)) \land \\
x \neq \text{init} \Rightarrow \text{before(\text{init}, x, p)} \land \\
x \neq \text{goal} \Rightarrow \text{before(x, goal, p)}
\]

Both the function definitions of before and possibly_before can be used in the new bounded version without change.

5.4.3 Modelling the New Operations

The init_poset operation includes the initial arc which asserts that the init node is prior to the goal node.

\[
\text{init_poset} : \rightarrow \text{Bounded Poset} \\
\text{init_poset}() \triangleq \\
\{ \text{mk-Arc} (\text{init}, \text{goal}) \}
\]

Adding a new node to the order now involves placing the node between the two bounds:

\[
\text{add_node} : \text{Node} \times \text{Bounded Poset} \rightarrow \text{Bounded Poset} \\
\text{add_node}(u, p) \triangleq \\
p \cup \{ \text{mk-Arc} (\text{init}, u), \text{mk-Arc}(u, \text{goal}) \}
\]

The new make_before is virtually the same as the old operation, except it needs an extra pre-condition which checks that the nodes are already in the partial order. This is necessary because any nodes put in the partial order have to be put in between the bounds first:

\[
\text{make_before} : \text{Node} \times \text{Node} \times \text{Bounded Poset} \rightarrow \text{Bounded Poset} \\
\text{make_before}(u, v, p) \triangleq \\
\text{if possibly_before}(u, v, p) \land \{ u, v \} \subseteq \text{get nodes}(p) \\
\text{then } p \cup \{ \text{mk-Arc}(u, v) \}
\]

5.5 Summary

In this chapter, we have presented a purely functional approach to creating new data structures which may then be used as building blocks in a larger specification. Functions are special kinds of operation which return a unique, single value, and do not access an external system state. They may be specified

- *implicitly*, using the pre- and post-condition form; or

- *explicitly*, using (typically) a recursive algorithm which one can use to calculate an output given a set of legal input values.
Finally, we built up a data structure representing a partial order, which will be used as a building block for the case study of the next chapter.

Additional Problems 5

Problem 1. Change the definition of *make_before*, in the same way as *make_before*’ in Exercise 5.5 no 3, to make it more efficient.

Problem 2. Write down an explicit representation of the bounded partial order in figure 5.4.

Problem 3. Perform the proof obligations for the new bounded poset.

Problem 4. Exercise 5.3 no 4. asked you to argue that *transitivity* can be paired with either the *irreflexivity* axiom or the *anti-symmetry* axiom to create the strong poset theory. Explain why this argument breaks down when the ordering is bounded.

Problem 5. Refer to the horse racing example of chapter 4. Simplify the *UPDATE* function’s post-condition through the use of function definitions.

Bibliography

Chapter 6

Specification Case Study in VDM

6.1 Introduction

One interesting application area in which formal specification can be used is that of Artificial Intelligence (AI). This involves the creation of computer systems which perform tasks normally associated with human intelligence, such as planning, reasoning, vision, natural language understanding and learning.

AI applications tend to be complex, leading to huge implementations. In some cases, scientists create theories and models of intelligence with which to guide or base their computational models. With such large engineering tasks an interesting question arises: how do scientists know that their computer models have been implemented faithfully? One approach is to use a formal specification as a bridge that links the high level model at one extreme, and the implementation at the other. That way, the model can be mapped to the specification, which can then itself be prototyped, or used as a contract with respect to which the correctness of the implementation is checked.

An easy mistake to make, especially in complex application areas such as those in AI, is to assume that if the problem is ill-defined, formal specification techniques are not applicable. “Such and such an area is not capable of being fully captured, therefore formal specification is not appropriate” one might say. This misses the point: if a complex program is to be written to simulate an un-fathomable application then the program itself can (and should) be formally specified, even though the area it is approximating cannot.

In this chapter we will develop a VDM specification of the main procedure in a planning program, that is a program which generates plans automatically. Specifically, our design level specification in section 6.4 captures the goal achievement procedure in a “Constraint Posting Non-Linear Conjunctive Planner” (the reader is referred to [Chapman 87] for the background on this). As well as being an interesting and non-trivial specification, it involves the use of all of the techniques we have met so far.

In the next chapter we will prototype this specification using Prolog. As with any substantial case study, however, the reader must become familiar with the application area, and we devote several pages to giving a simple introduction to planning. Those who need more
6.2 Automatic Planning

Planning is what we do when we assemble orderings of actions to achieve goals. These orderings are temporal - they involve the concept of time. In chapter 5 we introduced the idea of using a partial ordering to represent temporal relations between actions. As well as actions, we must represent objects that are being acted on, and properties and relationships between these objects.

In the model developed in this chapter, we will often refer to the actions, objects and relationships which are relevant the planning world or simply the world for short.

Going on holiday requires a simple form of planning - actions are packing suitcases, going to the travel agent, going to the airport, booking a hotel and so on. Orderings include ‘obtain tickets before flying’ and ‘pack suitcases before going to the airport’. Objects related to the actions are travel tickets, passports, currency, people, planes, baggage and so on, and these objects may have a myriad of important properties and relationships.

Computer programming is another type of planning. Typical actions are programming commands such as assignment, procedure call and iteration; in most programming languages, commands are applied (or executed) sequentially, so here we have a total ordering of actions in time. For example, the code fragment:

\[z := 0; \text{while} \ (z + 1)^2 \leq x \ \text{do} \ z := z + 1 \]

means apply action \(z := 0 \) before the iterative action \(\text{while} \ (z + 1)^2 \leq x \ \text{do} \ z := z + 1 \). Objects are modelled by data types, and relations between objects are the relational operators of the data types used. Goals may be posed by stating conditions on output data. Here the goals may be given by a program specification, and in VDM these would be the post-conditions of operators. The goal of our program example is:

\[(z^2 \leq x) \land (x < (z + 1)^2) \]

which was the post-condition of the \(INT _SQR \) example in section 3.2.

The form of planning we will model in this chapter is called generative because the planner proceeds to work out a complete plan to achieve some given goals, assuming it has a fixed, correct representation of the planning world. Where the interaction of a plan execution mechanism with a largely unknown environment is the most important factor, a different kind of planning, call reactive planning, may be called for. Our model will be restricted by a number of other simplifying assumptions, to make the case study small enough to fit into a chapter. As a working example we use a world often referred to in the planning literature as the blocks world (see figure 6.1(a)). Here a robot is given a goal in the form of an arrangement of stacked blocks, and has to work out a plan to achieve that goal. The plan must consist of actions to be applied by a robot arm (a gripper).

\(^1\)Refer to [Rich and Knight 91] for a good introduction to Planning.

Figure 6.1: The blocks world (state S1)

6.2.1 Objects in the Blocks World

Objects in the blocks world are the blocks, the table and the gripper. Typical goals involve block stacking, using the gripper. We express properties and relationships in planning worlds in the form of literals, such as ‘block a is on b’ and ‘block d has a clear top’. The imaginary world given in figure 6.1(a) could be represented by asserting the following literals, which we will refer to as state S1:

‘block a is on block b’, ‘block c is on the table’, ‘block b is on the table’,
‘block d is on the table’, ‘block d has a clear top’, ‘block a has a clear top’,
‘block c has a clear top’, and ‘the gripper is free’.

A set of literals that is assumed to capture a snapshot of the world adequately is called a state. To keep the representation of a state simple, we will insist that each literal making up a state asserts a single, positive fact about the world. Negative literals such as:

‘block b has not got a clear top’

can be represented implicitly: we assume that whatever is not asserted is false: hence, if it is not asserted that ‘block b has a clear top’, then we assume it is not the case.

Certain facts such as:

‘the table always has space for a block’

can be also be represented implicitly, within the actions that model block stacking. The assumed infinite size of the table, for example, can be represented by assuming that a block can always be put down onto it.

Note also that the choice of which literals to use depends totally on the user and the sort of tasks that the user has in mind for the planner. For instance we have chosen not to record any shape information about the blocks, or the fact that they are all the same
6.2.2 Actions in the Blocks World

We choose to model four types of action in the blocks world, all performed by the robot gripper: grasping a block, picking up a block, putting a block down onto another, and putting a block down onto the table. Our planner will embody the assumption that the effect of actions changing states can be stated by defining actions via pre-conditions and post-conditions, in a similar form to a VDM operation. An action which models the gripper getting hold of block \(a \) is defined as follows:

pre-conditions - literals that must be true before the action can be applied:

'block \(a \) has a clear top', 'the gripper is free'

post-conditions -
literals made true by the effect of the action:

'gripper grasps block \(a \)'

literals made false by the effect of the action:

'block \(a \) has a clear top', 'the gripper is free'

The pre-conditions are assumed to be those facts needed to be true in a state for the action to be applicable. So before this action can be executed on a state, the literals 'block \(a \) has a clear top' and 'the gripper is free' must be asserted in the state description. The post-condition of an action is traditionally split into two separate structures: the *add-set*, holding those literals made true by the effect of the action, and the *delete-set*, holding only those literals made false by the effect of the action. Complete with a name, *grasp* \(a \), a shortened form of this action is then (we assume \(a, b, c \) and \(d \) denote blocks from now on):

name: *grasp* \(a \)

pre-conditions: 'a has a clear top', 'gripper is free' ;

add-set: 'gripper grasps a' ;

delete-set: 'a has a clear top', 'gripper is free' ;

In the same way we can model lifting up block \(a \) from another block, lifting up block \(a \) from the table, putting \(a \) down onto another block, and putting \(a \) down onto the table:

name: *liftup* \(a \) from \(b \) ;

pre-conditions: 'gripper grasps a', 'a is on \(b \)' ;

add-set: 'a lifted up', 'b has a clear top' ;

delete-set: 'a is on \(b \)' ;

name: *liftup* \(a \) from table ;

pre-conditions: 'gripper grasps a', 'a is on table' ;

add-set: 'a lifted up' ;

delete-set: 'a is on table';

name: *putdown* \(a \) onto \(c \)

pre-conditions: 'a lifted up', 'c has a clear top' ;

add-set: 'a is on \(c \)', 'gripper is free', 'a has a clear top' ;

delete-set: 'a lifted up', 'gripper grasps \(a \)', 'c has a clear top' ;
name: putdown a onto table;
pre-conditions: ‘a lifted up’;
add-set: ‘a is on table’, ‘gripper is free’, ‘a has a clear top’;
delete-set: ‘a lifted up’, ‘gripper grasps a’;

The actions moving the other blocks b, c, d can all be written in exactly the same form, giving a total of 36 action instances (4 grasp’s, 4 liftup’s from the table, 4 putdown’s onto the table, 12 putdown’s between blocks and 12 liftup’s between blocks). In fact, we could reduce the action set to just 5 actions if we used parameters for the block names a, b, c, d (see Exercise 6.2 no. 2) but this would over-complicate the VDM specification we are about to develop.

6.2.3 Action Application

Next, we define how actions change states. An action can be applied to a state if its pre-conditions are literals contained in that state. For example, grasp a’s pre-conditions are contained in state A, so grasp a can be applied to it. The effect of applying an action to a state is that any literals in the action’s delete-set are deleted from the old state, and all the literals in the action’s add-set are ‘united’ to the result, generating a new state. In summary, applying action A to state S, denoted apply(A, S), is given by:

\[apply(A, S) = (S \setminus A’s \text{ delete-set}) \cup A’s \text{ add-set} \]

Important note: In the rest of the chapter the name of an action will often be identified with the full action representation that it stands for. This is a shorthand device, because when we refer to actions, we do not want to keep repeating their full representation, including their pre- and post-conditions. For example, when we write “apply action grasp a”, we actually mean apply the action named grasp a.

Examples 6.2

1. Applying grasp a to state S1 results in a new state, called state S2, as follows (see figure 6.1(b)):

\[
\text{state } S2 \\
= \text{ apply grasp a to state } S1, \\
= (\text{ state } S1 \setminus \text{ delete-set of } \text{ grasp a}) \cup \text{ add-set of } \text{ grasp a} \\
= (\{ ‘a has a clear top’, ‘gripper is free’ \}) \cup \{ ‘gripper grasps a’ \}, \\
= \{ ‘a is on b’, ‘c is on the table’, ‘b is on the table’, ‘d is on the table’, ‘d has a clear top’, ‘gripper grasps a’ ‘c has a clear top’ \},
\]

Note that grasp a is applicable to state S1 because its pre-conditions (‘a has a clear top’, ‘gripper is free’) are contained in S1.

2. The pre-conditions of liftup a from b (‘gripper grasps a’, ‘a is on b’) are contained in state S2 so we may apply this action to it. Calling the new state S3 (see figure 6.1(c)), we have:

\[
\text{state } S3 \\
= \text{ apply liftup a from b to state } S2, \\
= (\text{ state } S2 \setminus \text{ delete-set of } \text{ liftup a from b}) \cup \text{ add-set of } \text{ liftup a from b} \\
= (\{ ‘gripper grasps a’, ‘a is on b’ \}) \cup \{ ‘b is on the table’, ‘c is on the table’, ‘d is on the table’, ‘d has a clear top’, ‘gripper grasps a’ ‘c has a clear top’ \},
\]
gripper	
---	---
block	a

|block | block | block |
|b | c | d |
--- --- ---

Figure 6.1(b): The blocks world (state S2)

gripper	
---	---
block	a

--- --- --- ---

|block | block | block |
|b | c | d |
--- --- ---

Figure 6.1(c): The blocks world (state S3)
= apply liftup a from b to state S2
= (state S2 \ delete-set of liftup a from b) \ add-set of liftup a from b
= (state S2 \ \{‘a is on b’\}) \ \{‘a lifted up’, ‘b has a clear top’\},
= \{‘a lifted up’, ‘b has a clear top’, ‘c is on the table’, ‘b is on the table’,
‘d is on the table’, ‘d has a clear top’, ‘gripper grasps a’ ‘c has a clear top’\}.

Exercise 6.1

Apply the action putdown a onto c to state S3 to obtain a new state, S4.

6.2.4 Plans

A solution plan to a planning problem is an ordering of actions which achieves a set of
goals, and the ordering may be total or partial. A plan is executed by applying each of
its individual actions in turn. Planning problems can be posed by describing:

- an initial state: this is the state from which the solution must start execution,
- a set of goal literals: these are the literals which must be achieved. A goal literal is
 said to be achieved by an action sequence if it is contained in the final state after
 the actions have all been applied (a more general definition of goal achievement is
given in section 6.4).

To be able to solve a planning problem, a planner must have access to a set of actions.
A subset of these actions will be used to form the solution. A solution to a planning
problem is simply a correct plan, defined as follows:

A correct plan is a complete plan which when applied sequentially to the initial state
produces a state which contains all the goal literals.

A complete plan is a total order of actions which can be applied sequentially to an initial
state to produce a final state.

Note that the correctness of a plan can only be checked if we have a set of goals in mind.
These definitions generalise easily to partially ordered plans, since a partially ordered
plan can be thought of as specifying a set of totally ordered plans (see Exercise 5.3 no.
3). Hence we have:

A partially ordered plan is complete (correct) if all the totally ordered plans it specifies
are complete (correct).

This model of planning sidesteps many considerations such as the use of resources and
the passage of time intervals. For example, in exercise 6.2 no. 1 we model the Painting
World of figure 5.2 in chapter 5. With our restricted model, it is impossible to consider
such questions as “have we enough paint to cover the wall?” and “has the first coat of
paint dried?”. It would be interesting to extend the model to cope with this kind of
reasoning, but to keep the case study to a reasonable size we have to limit the planner’s
application.
Examples 6.2

1. Consider ‘going on a foreign holiday’ as a planning scenario. A plan with the goal ‘Holiday in Spain’ which got us to an airport without bringing our passport would be an incomplete plan. The pre-condition of one of the actions, going through passport control, would not be met. Similarly, a plan which was complete, but landed us in Bermuda rather than Torremolinos would be an incorrect (although perhaps more desirable) plan.

2. Consider the sequence of actions:

 grasp a, liftup a from b, putdown a on c

Examples 6.1 and Exercise 6.1 show that each of these three actions can be applied in sequence starting from state S1, hence it is a complete plan. If the goal was \{‘a is on c’, ‘b has a clear top’\}, then the plan is correct with respect to this goal. This sequence is not correct with respect to goals \{‘c is on d’, ‘b has a clear top’\}, because it does not achieve one of the literals in the goal set.

3. The sequence:

 grasp a, putdown a onto c, liftup b from table

is not a complete plan starting at state S1, because putdown a onto c cannot be applied after grasp a, according to our definition of action application. After grasp a has been applied, the pre-condition ‘a lifted up’ of putdown a onto c is not in the resulting state S2.

Exercises 6.2

1. Referring to figure 5.2 in chapter 5, we can capture the Painting World in our planning model. As a start, we model the operator paint_ceiling as follows:

 name: paint_ceiling
 pre-conditions: ‘have ladder’, ‘ladder functional’, ‘have paint’
 add-set: ‘ceiling painted’
 delete-set: empty

 Within our simplification of reality paint_ceiling does not delete any facts, and we state this as ‘empty’. The other four actions are:

 name: paint_wall
 pre-conditions: ‘have paint’, ‘ceiling painted’
 add-set: ‘wall painted’
 delete-set: empty

 name: paint_ladder
 pre-conditions: ‘have ladder’, ‘have paint’
 add-set: ‘ladder painted’
 delete-set: ‘ladder functional’

 name: get_paint
Pre-conditions: ‘have credit card’
add-set: ‘have paint’
delete-set: empty

Name: getLadder
Pre-conditions: ‘have credit card’, ‘own large car’
add-set: ‘have ladder’, ‘ladder functional’
delete-set: empty

From initial state:
{ ‘have credit card’, ‘own large car’ }

Show that the plan illustrated in figure 5.2 is correct, with respect to the goal set:
{‘ladder painted’, ‘ceiling painted’, ‘wall painted’ }.

Note: To show correctness of the plan, you should show that every totally ordered plan conforming to the partial order, of which there are four, is correct (see exercise 5.3 no. 3).

2. Generalise the blocks world action definitions so that you may use parameters, and express actions such as putdown X onto Y and liftup Z from the table. Are there any special problems arising when parameters are introduced? (For example, consider the case where X = Y in the definition of putdown X onto Y)

6.3 An Abstract Specification of the Planner

The overall requirement of our planning program is to input a problem posed correctly in its input language, and output a correct plan. How are we to specify such a program? We will choose two levels on which to pose the specification. The first specification, given in section 6.3.2, is more abstract, implicit and a good deal shorter than the more concrete specification developed in section 6.4. It relies on a formalisation of the input and captures the idea that the output must be an ordering of actions which is correct with respect to the input goal set. The second level of specification incorporates a goal directed solution method, and is concrete enough for us to prototype in the next chapter.

We start, however, by creating a model of the input language to the planning program, which will be used for both levels. This input will contain the actions, the initial state, and the goal.

6.3.1 A VDM Representation of Planning Problems

All components of our simplified planning system have as their basis the literal, so we shall start by modelling it. Order is important in a literal (for example ‘block a is on block b’ is not the same as ‘block b is on block a’), and it can be of variable length, hence we will use a sequence of tokens or identifiers to represent it.

\[Literal = Token^* \]
Furthermore, if the literal contains a relation name or property name, we let it be the head element in the sequence, and the objects related by it, the tail. For example, in state S_1, ‘on’ is a relation name and ‘clear’ a property name.

Both a state and a goal can be modelled as sets of Literals. In both cases ordering of Literals is not assumed to be important, and there is no limit to the size of goals and states. The Set type is therefore chosen\(^2\):

$$State = \text{Literal-set}$$

$$Goal = \text{Literal-set}$$

Actions have a fixed number of different components (a name, a pre-condition and so on) which leads us to choose a model using a composite:

$$Action :: \text{name} : \text{Literal}$$
$$\qquad \text{pre} : \text{Literal-set}$$
$$\qquad \text{add} : \text{Literal-set}$$
$$\qquad \text{del} : \text{Literal-set}$$

Finally, we put the three components together in a composite type

$$Planning_Problem :: AS : Action-set$$
$$\quad I : State$$
$$\quad G : Goal$$

Here the component variables represent:

- the set of actions
- the initial state
- the goal expression

Examples 6.3

1. State S_1 is explicitly represented in VDM as:

 $$\{ [\text{on, a, b}], [\text{on, c, table}], [\text{on, b, table}], [\text{on, d, table}],$$
 $$[\text{clear, d}], [\text{clear, a}], [\text{clear, c}], [\text{free, gripper}] \}$$

2. The goal set in Exercise 6.2 no. 1 is represented in VDM as:

 $$\{ [\text{painted, ladder}], [\text{painted, ceiling}], [\text{painted, wall}] \}.$$

3. Action *grasp a* is represented in VDM by the expression:

\(^2\)Note that our interpretation of *Goal* and *State* are different. A state is interpreted with the implicit assumption that anything not asserted in it is assumed to be false. A goal, on the other hand, specifies a set of states - exactly all those which contain all the goal's literals.
4. In the Painting World, as in the Blocks World, when we translate the literals into VDM, we use the convention that the properties of objects head the literal sequence. Action \textit{paint ceiling} is represented by

\begin{verbatim}
mk-Action([paint, ceiling],
 {[have, ladder], [functional, ladder], [have, paint]},
 {[painted, ceiling]},
 {})
\end{verbatim}

6.3.2 Exercises 6.3

Using the explicit VDM representations of sequences, sets and composites, represent the following:

1. states \(S2 \) and \(S3 \);
2. all the Blocks World actions;
3. the planning problem consisting of the actions in 2., the initial state \(S1 \) and the goal expression:

\begin{verbatim}
{ [on, a, c], [clear, a] }
\end{verbatim}

6.3.3 Invariants for the Planning Problem

Many invariants can be captured to ensure the validity of the planning problem. We will state several here, in terms of problem components \(I, G \) and \(AS \). The reader is invited to develop the model further in exercise 6.2.

(1) ‘every literal in the goal set appears in either the initial state or in some action’s add-set’. This is required because the only way that literals can be added to the initial state in our model is through the application of actions. If it were not satisfied, then the goal set would not be achievable. The condition formalises to:

\(\forall l \in G \cdot (l \in I \lor \exists A \in AS \cdot l \in A.add) \)

(2) An invariant that invalidates trivial problems is: ‘the goal set is not a subset of the initial state’, captured by:

\(\neg (G \subseteq I) \)

(3) Actions need to be restricted to disallow futile ones: ‘No action can both add and delete the same literal’. This formalises to:

\(\forall A \in AS \cdot \neg (\exists p \cdot p \in A.add \land p \in A.del) \)
Putting these together we obtain the data type:

\[
\text{Planning Problem} :: AS : \text{Action-set} \\
I : \text{State} \\
G : \text{Goal}
\]

\[
\text{inv } mk-\text{Planning Problem} (G, I, AS) \triangleq \\
\forall i \in G \cdot (i \in I \lor \exists A \in AS \cdot i \in A.add) \land \\
\neg (G \subseteq I) \land \\
\forall A \in AS \cdot \neg (\exists p \cdot p \in A.add \land p \in A.del)
\]

Exercises 6.4

1. Check that your answer to Exercise 6.3, no. 3, satisfies the data type invariant.

2. Formalise the condition: ‘every action has at least one literal in its add-set’.

3. Formalise the condition: ‘every pre-condition literal is either in the initial state or in some action’s add-set’.

The conditions in questions 2. and 3. may well be worthy of inclusion in the invariant. If 2. were not satisfied by an action then one might ask why that action were included (because it could not help in achieving a goal). If 3. were not satisfied by an action, that action would not be able to be used in a plan, as its pre-conditions could never be achieved in (or added to) a state. On the other hand we may not want to be too strict, because we may pose different problems by changing the initial state and the goal, while keeping the action set fixed.

6.3.4 A First Specification of the Planner

In this section we build up an abstract specification using functions as building blocks. The planner itself is implicitly defined via an operation which inputs a Planning Problem and outputs a solution in the form of an ordering of actions. No notion of VDM state is required, because of the very abstract nature of the specification.

We start by formalising the application of actions in VDM, with the following function which applies an action to a state:

\[
\text{apply} : \text{Action} \times \text{State} \rightarrow \text{State}
\]

The definition of apply immediately follows from the definition given in section 6.2.3. To make the function total, however, we introduce the idea of an ‘error’ state, and regard this as the empty set of literals. Applying an action to an error state should also result in an error state:
apply : Action × State → State

apply (a, s) \begin{cases}
& \text{if } a.\text{pre} \subseteq s \\
& \text{then } (s \setminus a.\text{del}) \cup a.\text{add} \\
& \text{else } \{ \}
\end{cases}

A planning problem is solved by the application of a sequence of action applications, and so we need to formalise the idea of the application of an action sequence to a state. This is done in terms of apply: the function apply_seq applies the head of an action sequence to obtain an advanced state, and recursively calls itself with the advanced state and with the tail of the action sequence:

apply_seq : Action* × State → State

apply_seq (as, s) \begin{cases}
& \text{if } as = [] \\
& \text{then } s \\
& \text{else } apply_seq(tl as, apply(hd as, s))
\end{cases}

Note:

- if the action sequence is empty, the state is returned unchanged.
- if as is an incomplete plan, then the definition of apply ensures that the function evaluates to the empty set, signifying an error state.

Next the notion of completeness of a plan is formalised, again using apply within a recursive function. complete (as, s) returns true if and only if every action in the sequence as is applicable, starting with state s. The function is boolean valued:

complete : Action* × State → B

If the action sequence is empty it is considered complete, otherwise it is complete if

(a) the pre-conditions of the head of the sequence are contained in the current state, and

(b) the tail of the sequence is complete when applied to the advanced state obtained by applying the head of the sequence to the current state.

This is summed up by the VDM function:

complete : Action* × State → B

complete (as, s) \begin{cases}
& \text{if } as = [] \\
& \text{then } true \\
& \text{else } (hd as).\text{pre} \subseteq s \land complete(tl as, apply(hd as, s))
\end{cases}

Using the functions complete and apply_seq, an implicit specification of a planner can be written. Essentially, the specification states that for an input Planning_Problem, a correct plan in the shape of a sequence of actions is output:
PLANNER (pp : Planning_Problem) soln : Action

pre true

post elements soln ⊆ pp.AS ∧
 complete(sln, pp.I) ∧
 pp.G ⊆ apply_seq(sln, pp.I)

The post-condition asserts that

- only actions defined in the Planning_Problem are allowed in the action sequence;
- the plan is complete
- execution of the plan outputs a state which contains the goal

Hence the final two conjunctions formalise the correctness criterion given in section 6.2. Note that PLANNER is not a function as there may be many plans that satisfy this specification, given a particular planning problem. Even if we added an extra constraint to the post condition which insists on a minimum length solution, there still may be more than one correct plan.

Exercises 6.5

If the first three exercises, let A1 be the action called [grasp, a], A2 the action called [liftp, a, b], and A3 the action called [putdown, a, c].

1. Check that the expression:

 complete([A1, A2, A3], S1)

 evaluates to true.

2. Evaluate the expression:

 apply_seq([A1, A2, A3], S1)

 using the formal definition of apply_seq, verifying that it coincides with our informal notion of section 6.2.

3. Assume PLANNER has been input with the planning problem of Exercise 6.3, no. 3. Using the results of exercises 1. and 2. above, deduce that

 soln = [A1, A2, A3]

 makes the post-condition of PLANNER true.

4. Generalise the specification of PLANNER to one which outputs a partially ordered set of actions as a solution. Hint: apply must be re-defined to apply a set of action sequences and return a set of states.

5. Consider the following planning problem, where p and q are literals (this example is due to Yogesh Naik):
\texttt{mk-Planning_Problem}(
\texttt{mk-Action([\text{bill}], \{[p]\}, \{[q]\}, \{[p]\}), mk-Action([\text{ben}], \{[q]\}, \{[p]\}, \{[q]\}))},
\{p\},
\{p, q\})

It has two actions, called \textit{bill} and \textit{ben}; its initial state is simply the set of one literal, \(p\), and its goal is the set of two literals, \(p\) and \(q\). Verify that this problem satisfies \textit{Planning_Problem}'s invariant. With this problem as input, can you find an action sequence which satisfies \textit{PLANNER}'s post-condition? What conclusions can you draw about the Satisfiability of \textit{PLANNER}? In fact, this exercise shows that we can pose problems in the planning language for which there are no solution - planning is hard!

6.4 A Design Level Specification

In this section we construct a more concrete specification for the planner, which incorporates a goal directed procedure for solving planning problems. Most non-trivial problems can be usefully specified at one or more 'design levels', in which commitments to particular solution techniques and data structures are progressively made. After having completed a more detailed design level, it is up to the designer to check it is adequate with respect to the more abstract level. VDM encompasses a well developed process called \textit{reification}, in which operators and data types are re-expressed at a more detailed level after their initial specification, and the detailed level is checked for adequacy using \textit{a retrieve function}. Showing how the design level of the planner described in this section conforms to the abstract level given above is beyond the scope of this book, and is left as a project for the interested reader.

The specification, certainly towards the end of this chapter, becomes rather complicated and may be difficult for some readers. In this case, the reader is encouraged to move on to the next chapter, where the prototyping of the planner may shed more light on its specification, or to consult appendix 3, where sample inputs and outputs of the planner are given, as well as its implementation.

6.4.1 A Technique for Solving Planning Problems

The more concrete specification commits our planner to a particular solution method in which the planning program generates plans in a systematic manner and then terminates when it finds a plan that is correct. The solution method runs as follows:

- start with an initial plan which only contains the initial state and goal set, viewed as special actions;
- incrementally achieve goal literals by:
 - identifying an action already in the plan which achieves the goal literal; or
 - adding a new action to the plan to achieve the goal literal (in which case the new action’s pre-conditions themselves must be achieved).
START: Initialise the Planning Problem
by generating the initial plan,
and put the initial plan in a Store;

LOOP:

1. --Choose and remove a plan ‘pp’ from the Store;
2. --Choose a goal instance Gi from ‘pp’;
3. --Generate plans to achieve Gi in ‘pp’ in all ways possible;
4. --Add all new plans generated by step 3 to the Store

UNTIL there exists a plan in Store which has no unachieved goal instances.

figure 6.2: The Top Level Loop of a Naive Planning Algorithm

When an action is added to the plan, rather than storing it in a sequence, it is stored within a partially ordered set of actions, such as the action set in the Painting World example.

The planner’s job is to find a plan in which all literals in the goal set and in every action’s pre-condition are achieved, in the sense that the final solution is complete (the pre-conditions of each action are met as they are applied) and correct (the final state produced contains the goal set). This means that an action’s pre-conditions must be achieved at an earlier time than the goal set, and we will identify this time with the position of the action in the plan. The combination of a goal literal with a position in the temporal ordering at which it must be achieved we call a goal instance.

In figure 6.2 we present a top level algorithm of a planning program. If we assume that the choices in steps 1. and 2. are made randomly, then the heart of this algorithm is step 3. - generating new plans which achieve previously unachieved goal instances. The specification developed here will consist of the initialisation operation carried out before the loop, and two operations which perform goal achievement necessary for step 3. The terminating condition of the loop is dependent on a plan being found in Store which has no unachieved goal instances. In fact, the specification of the goal achievement operations ensures that once a plan is found with an empty set of unsolved goal instances, that plan will contain a solution as defined by our abstract specification in section 6.3.
A goal instance is any pre-condition literal and action pairing in a plan. To use a concrete example, consider figure 5.4 in chapter 5. We know ‘have ladder’ is a pre-condition of action \textit{paint ceiling}, hence the pair (‘have ladder’, \textit{paint ceiling}) is a goal instance in the plan represented by figure 5.4. One of the goal literals of the Painting World is ‘ladder painted’, so the pair (‘ladder painted’, \textit{goal}) is another goal instance. In this example, \textit{goal} is considered a special kind of action, whose pre-conditions are the literals in the goal set. The same can be done for the initial state - it can be considered an action which has an add-set containing all the literals in the initial state.

For a more abstract example, refer to figure 6.3. It is a bounded poset representing an abstract plan containing some imaginary actions which we call \(C1, C2, C3, C4, A\) and \(O\). Assume ‘\(p\)’ in the diagram is a literal contained in the pre-conditions of \(O\); then the pair (\(p, O\)) is an example of a goal instance.

Now we can give a full definition of \textbf{goal achievement}:

\begin{quote}
A goal instance \((p, O)\) is achieved in a plan if some action \(X\) is constrained to be necessarily before \(O\), \(X\) contains \(p\) in its add-set, and no action that could possibly occur between \(X\) and \(O\) contains \(p\) in its delete-set. In this case \(X\) is said to be the achiever of \(p\) at \(O\).
\end{quote}

We can define a complete plan in terms of goal achievement: a complete plan is a bounded ordering of actions in which every goal instance is achieved by some action (compare this definition with our earlier definition of completeness for sequential plans in section 6.3). A complete plan in this sense is also correct because a subset of these goal instances are those taken from the goal set and combined with dummy action \textit{goal}. We will finish this section with several examples and exercises, so that the reader may get an intuitive feel for our goal achievement definition.

Examples 6.6

1. The goal instance (‘ladder functional’, \textit{paint ceiling}) is achieved in the Painting World plan of figure 5.4, by action \textit{get ladder}. We can check the conditions are true by our definition of goal achievement:

 - \textit{get ladder} is necessarily before \textit{paint ceiling}, as there is a path of directed arcs (in this case just one) from the former to the latter;
 - \textit{get ladder} contains ‘ladder functional’ in its add-set (see Exercise 6.2);
 - the only action that can possibly occur between \textit{get ladder} and \textit{paint ceiling} is \textit{get paint}. It does not contain ‘ladder functional’ is its delete-set, and so this condition is met.

Note that if \textit{paint ladder} was not ordered to be after \textit{paint ceiling}, then goal achievement would not necessarily true, because \textit{paint ladder} contains ‘ladder functional’ is its delete-set.
2. The goal instance (‘have paint’, \textit{paint wall}) is achieved by action \textit{get paint}. The conditions are true as follows: \textit{get paint} is necessarily before \textit{paint wall}; \textit{get paint} contains ‘have paint’ in its add-set (see Exercise 6.2); none of the three actions that could be between \textit{get paint} and \textit{paint wall} contain ‘have paint’ in their delete-set.

3. In figure 6.3, action instance A \textit{could} be the achiever of goal instance (p, O) if

- A contains p in its add-set
- $C1$ does not contain p in its delete-set.
- Either $C4$ does not contain p in its delete-set OR an arc is added from $C4$ to A to constrain $C4$ to be before the achiever, A.

4. $C4$ could be the achiever of goal instance (p, O) if all these conditions are made true:

- An arc was added from $C4$ to O, to ensure $C4$ was executed before O in an application of the completed plan;
- $C4$ contains p in its add-set;
- Either $C1$ does not contain p in its delete-set OR an arc is added from $C1$ to $C4$ to constrain $C1$ to be before the achiever, $C4$.
- Either A does not contain p in its delete-set OR an arc is added from A to $C4$ to constrain A to be before the achiever, $C4$.

Actions that could not possibly be used to achieve p are those that do not contain p in their add-sets, those which are necessarily after O (for example $C2$), and those which have an action in between them and the goal instance which deletes p.

Of course, another way to achieve a pre-condition literal p is to add another action to the plan to achieve it. In this case we must go through the same procedure to make sure p is not ‘undone’. Note that although any further temporal constraints on the plan (that is additional arcs) will not invalidate the achievement of p, the addition of an action to achieve some other goal instance may well undo its achievement (we return to this point later).

\textbf{Exercises 6.6}

1. Using the example plan in figure 6.3, state the conditions under which the following operators achieve (p, O):

(a) $C1$

(b) $C3$

(c) \textit{init}
figure 6.3: An abstract plan (C1,C2,C3,C4,0,A are arbitrary action identifiers, init and goal identify the initial state and goal conditions viewed as special actions)

figure 6.4: A new abstract plan
2. Assume another action \(Y \) is added to the plan in figure 6.3, and constrained to be before \(O \) in the new plan (see figure 6.4). State the conditions under which \(Y \) achieves \((p,O)\).

3. (This follows on from question 2.) Assume the conditions of \(Y \) being an achiever for \(p \) in question 2. are true. Now add extra temporal constraints to figure 6.4, for example an arc from \(Y \) to \(C1 \), and another from \(C4 \) to \(O \). Is \(Y \) still an achiever for \(p \)? Form an argument showing that for any \(X \) which is an achiever for a literal \(p \) at action instance \(O \), then no legal additions of temporal constraints (that is arcs) will affect \(X \)'s achievement of \(p \).

4. List all the goal instances in the Painting World plan of figure 5.4. Convince yourself, using our definition of goal achievement, that the plan contains an achiever for each one.

6.4.3 Modelling the VDM State

The VDM state will represent a developing plan, as discussed above. The developing plan consists of some actions, a temporal ordering on those actions, some outstanding goal instances to be achieved, and some goal instances already achieved. The ‘achieve’ operations defined later will change the state by achieving one of the unsolved goal instances either through the addition of an action to the plan, or through an existing action in the plan.

Although it will also contain the planning problem itself, we will call the whole system state a **Partial Plan**, and give it five state components named \(pp \), \(Os \), \(Ts \), \(Ps \), \(As \) as follows:

```plaintext
state Partial Plan of
  pp: Planning Problem
  Os: Action instances
  Ts: Bounded Poset
  As: Goal instances
  Ps: Goal instances
end
```

Actions, states and the structure of **Planning Problem** were all defined in section 6.3.

The Action instances Data Structure

This component holds the actions occurring in a plan - called the *action instances*. It is necessary to allocate each action instance a unique identifier as it is added to the developing plan because the same action may occur more than once in the plan. In this case \(Os \) needs to be represented using a mapping from identifiers to actions, and an invariant is used to constrain the range of \(Os \) to be members of \(pp.AS \) (recall from 6.3 that \(AS \) represents the component of **Planning Problem** in which the action definitions are held). This map captures the constraint that no identifier can point to more than one action, but allows one action to be pointed to by more than one identifier.
For the sake of uniformity, the initial state and the goal set will be modelled as special actions, occurring in every plan. More importantly, they will become the lower and upper bounds, respectively, of the bounded poset in Ts below. These special actions are formed explicitly as:

\[
\begin{align*}
\text{mk-Action}[[\text{init}], \{\}, pp.I, \{\}] \\
\text{mk-Action}[[\text{goal}], pp.G, \{\}, \{\}]
\end{align*}
\]

and will be identified by \text{init} and \text{goal} respectively. The translation of these two literal sets into the actions above is intuitively sound: the initial state needs no pre-conditions, does not delete any literals but has the effect of ‘adding’ all its literals; the goal does not have any post-condition effects, but to achieve its pre-conditions a plan must have asserted all the literals in the goal.

The type of Os is \text{Action_instances}, and is defined as follows:

\[
\text{Action_id} = \text{Token}
\]

\[
\text{Action_instances} = \text{Action_id} \rightarrow \text{Action}
\]

\textbf{The Bounded Poset Data Structure}

Ts holds a strong partial order relation on the action identifiers in Os, bounded by \text{init} and \text{goal} which identify the special initial state and goal actions. The poset specification developed in the last chapter is adapted and used below to provide the temporal structure for the plan:

\[
\begin{align*}
\text{Arc} : & \text{source} : \text{Action_id} \\
& \text{dest} : \text{Action_id}
\end{align*}
\]

\[
\text{Bounded_Poset} = \text{Arc_set}
\]

\[
\begin{align*}
\text{inv} & \ \text{mk-Bounded_Poset}(p) \triangleq \forall x, y \in \text{get_nodes}(p) . \\
& \neg (\text{before}(x, y, p) \land \text{before}(y, x, p)) \land \\
& x \neq \text{init} \Rightarrow \text{before}(\text{init}, x, p) \land \\
& x \neq \text{goal} \Rightarrow \text{before}(x, \text{goal}, p)
\end{align*}
\]

The associated functions change little from chapter 5:

\[
\begin{align*}
\text{get_nodes} : & \text{Arc_set} \rightarrow \text{Action_id} \\
\text{get_nodes}(p) & \triangleq \\
\{a.\text{source} \mid a \in p.\text{arcs}\} \cup \{a.\text{dest} \mid a \in p.\text{arcs}\}
\end{align*}
\]

\[
\begin{align*}
\text{before} : & \text{Action_id} \times \text{Action_id} \times \text{Arc_set} \rightarrow \text{B} \\
\text{before}(x, z, p) & \triangleq \\
\text{mk-Arc}(x, z) \in p \lor \\
\exists y \in \text{get_nodes}(p) \cdot \text{before}(x, y, p) \land \text{before}(y, z, p)
\end{align*}
\]
possibly_before : Action_id × Action_id × Arc-set → B
possibly_before (x, y, p) \[x \neq y \land \neg \text{before}(y, x, p) \]

Likewise, the three operations init_poset, add_node and make_node are easily adapted to fit this application:

\[
\text{init_poset} : \rightarrow \text{Bounded_Poset} \\
\text{init_poset} () \triangleq \{ \text{mk-before}(\text{init}, \text{goal}) \}
\]

add_node : Action_id × Bounded_Poset → Bounded_Poset
add_node (u, p) \triangleq p \cup \{ \text{mk-Arc}(\text{init}, u), \text{mk-Arc}(u, \text{goal}) \}

make_before : Action_id × Action_id × Bounded_Poset → Bounded_Poset
make_before (u, v, p) \triangleq \\
\text{if possibly_before}(u, v, p) \land \{ u, v \} \subseteq \text{get_nodes}(p) \text{ then } p \cup \{ \text{mk-Arc}(u, v) \}

The Goal_instances Data Structure

Ps represents a collection of unsolved goal instances, those which are still to be achieved by some action. A goal instance is a relation between goal literals and action identifiers, therefore we represent the set of Ps as a set of ordered pairs as follows:

\[
\text{Goal Instance} :: g l : \text{Literal} \\
\text{ai} : \text{Action_id}
\]

Goal_instances = Goal_instance-set

Action instances that are added to the plan to achieve the goal instances in Ps may themselves have pre-condition literals: these will then be added to Ps as goal instances. At initialisation, Ps will record the goal set pp.G, and will take the form:

\{ mk-Goal_instance(g1, goal), ..., mk-Goal_instance(gn, goal) \}

where pp.G = \{ g1, ..., gn \}. This can be written more concisely using set comprehension:

\{ mk-Goal_instance(g, goal) \mid g \in pp.G \}

Likewise, As holds a collection of achieved goal instances. This set will be initially empty, but each execution of the ‘achieve’ operations defined below will result in a literal being achieved at some point in the plan, and so this goal instance will be added to As.
6.4.4 The State Invariant

Some possible states of the Partial Plan structure we have defined are clearly not valid, and our discussion has already thrown up some useful invariants. We first start by listing the easier ones:

(1) Os always contains the two special actions formed from the initial state and goal literals.

(2) The range of the map Os (the Action-set) is a subset of actions posed in the Planning Problem augmented with the init and goal actions.

(3) The nodes in Ts and the identifiers from Os are the same; this ensures that Ts is a partial order on all (and only) those action instances in Os.

(4) Ps and As are disjoint: no goal instance can be both achieved and not achieved.

(5) All the pre-conditions of the action instances in Os are recorded as goal instances in either As or Ps (which means they have been achieved or are not achieved).

Finally we express the most important invariant of a plan:

(6) Every goal instance mk-Goal_instance(p, O) (for a goal literal p and an action instance O) in As is achieved using the definition in section 6.4.2:

- there is an action instance A in the plan which is necessarily before O and contains p in its add-set; AND
- no action in the plan that could possibly occur between A and O contains p in its delete-set.

Notice that O could itself be goal, in which case p would be one of the goal literals, or again, A could be the init action, in which case p would have to be contained in the initial state. Invariant (6) corresponds to the informal definition of goal achievement described at the beginning of section 6.4.

The first five conditions are expressed in VDM as follows. Readers are encouraged to try to formalise the conditions themselves before reading on.

1. Os(init) = mk-Action([init], { }, pp.I, []) ∧ Os(goal) = mk-Action([goal], pp.G, { }, [])
2. rng Os ⊆ pp.AS ∪ {Os(init), Os(goal)}
3. dom Os = get_nodes(Ts)
4. As ∩ Ps = { }
5. ∀ A ∈ dom Os · (p ∈ Os(A).pre ⇒ mk-Goal_instance(p, A) ∈ (Ps ∪ As))

The first part of (6):

“there is an action instance A in the plan which is necessarily before O and contains p in its add-set ... ”
formalises to
\[
\exists A \in \text{dom } O s \\
\text{before}(A, O, Ts) \land \\
p \in O s(A). add
\]

To formalise the second part, we make use of the partial order's \emph{possibly_before} function. The expression:
\[
\text{possibly_before}(A, C, Ts) \land \text{possibly_before}(C, O, Ts)
\]
means that \(A\) could be ordered to be before \(C\), and \(C\) could be ordered to be before \(O\), with respect to the partial order \(Ts\). This captures the idea that \(C\) could be ordered to be \emph{between} \(A\) and \(O\) in partial order \(Ts\). In figure 6.3, for example, this expression is true for \(C = C4\), and for \(A\) and \(O\) as they actually appear in the figure. Hence the second part:

"no action in the plan that could possibly occur between \(A\) and \(O\) contains \(p\) in its delete-set.

formalises to:
\[
\neg (\exists C \in \text{dom } O s \\
\text{possibly_before}(C, O, Ts) \land \\
\text{possibly_before}(A, C, Ts) \land \\
p \in O s(C). del)
\]

We put these conditions together into a function definition, which defines what it means for \(A\) to be an achiever of \(p\) at \(O\) in \(Ts\):
\[
\text{achieve} : \text{Action_instances} \times \text{Bounded_Poset} \times \text{Action_id} \times \text{Goal_instance} \rightarrow \mathbb{B}
\]
\[
\text{achieve} (O s, T s, A, \text{mk_Goal_instance}(p, O)) \triangleq \\
\text{before}(A, O, T s) \land \\
p \in O s(A). add \land \\
\neg (\exists C \in \text{dom } O s \\
\text{possibly_before}(C, O, T s) \land \\
\text{possibly_before}(A, C, T s) \land \\
p \in O s(C). del)
\]

and finally we can write condition (6) as:
\[
\forall \, gi \in A s \cdot \exists A \in \text{dom } O s \cdot \text{achieve}(O s, T s, A, \text{gi})
\]

Hence the final VDM state definition is:
\[
\text{state Partial_Plan of} \\
pp : \text{Planning_Problem} \\
O s : \text{Action_instances} \\
T s : \text{Bounded_Poset} \\
A s : \text{Goal_instances} \\
P s : \text{Goal_instances}
\]
Exercise 6.7

1. Check that the Painting World examples in Examples 6.6, no. 1 and no. 2, satisfy the formal definition of goal achievement.

2. The definition of achieve may be logically transformed to make prototyping more straightforward in the next chapter. Using the definitions of possibly_before and before already supplied, show that:

\[
\neg (\exists C \in \text{dom } Os \cdot \\
n possibility \text{before}(C, O, Ts) \land \\
n possibility \text{before}(A, C, Ts) \land \\
p \in Os(C).del)
\]

transforms to:

\[
\forall C \in \text{dom } Os \cdot \\
C = O \lor \\
C = A \lor \\
before(O, C, Ts) \lor \\
before(A, C, Ts) \lor \\
\neg (p \in Os(C).del)
\]

6.4.5 VDM Operations

Operation INIT

As usual we will construct the initialisation operation first. This inputs a Planning_Problem and outputs the first plan. The only action instances in Os are init and goal, there are no achieved goal instances, and the only goal instances to be achieved are those from the goal set itself, pp.G.
INIT (ppi : Planning_Problem)

ext wr pp : Planning_Problem
 wr Os : Action_instances
 wr Ts : Partial_order
 wr Ps : Goal_instances
 wr As : Goal_instances

pre true

post pp = ppi \∧
 Os = {init \mapsto mk-Action([init], \{\}, ppi.I, \{\}), goal \mapsto mk-Action([goal], ppi.G, \{\}, \{\})}\∧
 Ts = init-poset() \∧
 Ps = \{ mk-Goal_instance(g, goal) \mid g \in ppi.G \} \∧
 As = \{ \}

Operation ACHIEVE_1

The first operation we shall specify to achieve a goal instance uses an action instance already present in Os to be the achiever. Labelled ‘ext rd’ below, Os is for access only and does not change. The first post-condition predicate we need is therefore:

∃ A ∈ dom Os · achieve(Os, Ts, A, gi)

It is not just a question of verifying that the achieve function is true for this instance, however; it may be necessary to change the partial order Ts to make sure that the achieve predicate is true. The variable Ts is therefore labelled ‘ext wr’ below.

Exercise 5.5, no. 2, required the reader to formally specify

is_completion_of(\overset{\sim}{Ts}, T̃s),

which defines a relation between two posets. The relation is true if the two posets contain the same set of nodes, and any nodes that are ordered in T̃s are also ordered in Ts. This relation will be used to provide the constraint on the change to the input partial order that we require: Ts must be a completion of T̃s.

Finally, the goal instance being achieved is essentially passed from Ps to As:

\overset{\sim}{Ps} = Ps \setminus \{gi\} \∧
\overset{\sim}{As} = As \cup \{gi\}

Putting these predicates together, we get:

ACHIEVE_1 (gi : Goal_instance)

ext rd Os : Action_instances
 wr Ts : Partial_order
 wr Ps : Goal_instances
 wr As : Goal_instances

pre gi ∈ Ps
\[
\text{post} \ \exists A \in \text{dom} \ O_s \cdot \text{achieve}(O_s, T_s, A, g_i) \land \\
\text{is_completion_of}(T_s, T_s) \land \\
P_s = P_s \setminus \{g_i\} \land \\
A_s = A_s \cup \{g_i\}.
\]

Operation ACHIEVE.2

The second achieve operator achieves a goal instance by the introduction of a new action instance into O_s (recall exercise 6.4 no. 2). This is necessary if no action already in the plan can be found to achieve the goal.

The new action will need a new identifier, and to create a *unique* one for the action instance we assume the existence of a function which inputs a set of $Action_id$ and outputs one not in the set:

\[
\text{newid (is : Action_id-set) i : Action_id} \\
\text{pre true} \\
\text{post i \not\in is}
\]

The introduction of a new action instance can be written using the ‘let’ construct as follows:

\[
\text{let NewA = newid (dom } O_s) \text{ in} \\
\exists A \in pp.A \cdot O_s = \overset{\rightarrow}{O_s} \upharpoonright \{NewA \mapsto A\}
\]

and in fact we will use the ‘let’ construct to bind NewA to the new identifier throughout the whole post-condition.

Now that there is a new action in the developing plan, we have the added problem that certain goal instances in A_s may be rendered un-achieved (the technical term in planning for the plight of such unfortunate goal instances is that they have been *clobbered*). Consider figure 6.4 of exercise 2 in 6.4.2. Assume that a goal instance $(q, C1)$ had been achieved by action A, and that q was a member of Y’s delete-set. Then the addition of Y to achieve goal instance (p, O) would clobber q, as in this case the the ‘achieve’ predicate:

\[
\text{achieve}(O_s, T_s, A, \text{mk-Goal_instance}(q, C1))
\]

would evaluate to false, because the following expression is true:

\[
\text{possibly_before}(Y, C1, T_s) \land \\
\text{possibly_before}(A, Y, T_s) \land \\
q \in O_s(Y).\text{del}
\]

The preceding argument necessitates the ‘declobber’ condition in the post-condition of ACHIEVE.2 (we will define it fully later).
The relationship between the old and new temporal orders \(\overrightarrow{T_A} \) and \(T_A \) is a little more subtle in this second achieve operation. Here, \(T_A \) must be a completion of \(\text{add_node}(\text{New}A, \overrightarrow{T_A}) \), which is the ordering with the new node added. The constraint we need on the output temporal order is therefore:

\[
is_completion_of(\overrightarrow{T_A}, \text{add_node}(\text{New}A, \overrightarrow{T_A}))
\]

Finally, \(\overrightarrow{T_A} \) is augmented with the pre-conditions of the new action, and the achieved goal instance \(gi \) is passed to \(A_S \):

\[
Ps = (Ps \setminus \{gi\}) \cup \{\text{mk-Goal_instance}(p, \text{New}A) \mid p \in A.pre\} \wedge A_S = A_S \cup \{gi\}
\]

Putting these conditions together, gives us the following operation:

\[
\text{ACHIEVE,2}(gi : \text{Goal_instance}) \\
\text{ext rd } pp : \text{Planning_Problem} \\
\text{wr Os : Action_instances} \\
\text{wr } Ts : \text{Partial_order} \\
\text{wr } Ps : \text{Goal_instances} \\
\text{wr } As : \text{Goal_instances} \\
\text{pre } gi \in Ps \\
\text{post let } NewA = \text{newid(\text{dom } Os)} \text{ in} \\
\exists A \in pp.AS \cdot Os = Os \uparrow \{NewA \mapsto A\} \wedge achieve(Os, Ts, NewA, gi) \wedge \\
\forall gi \in As \cdot \text{declober}(Os, Ts, NewA, gi) \wedge is_completion_of(\overrightarrow{T_A}, \text{add_node}(NewA, \overrightarrow{T_A})) \wedge \\
Ps = (Ps \setminus \{gi\}) \cup \{\text{mk-Goal_instance}(p, \text{New}A) \mid p \in A.pre\} \wedge A_S = A_S \cup \{gi\}
\]

The \text{declober} condition effectively insists that each \(gi \) in \(As \) remains achieved after the addition of \(\{\text{New}A \mapsto A\} \) to \(Os \). If we let \(gi = \text{mk-Goal_instance}(q, C) \), then this is so if one of the following conditions is met:

- \(C \) is necessarily before \(\text{New}A \) in \(T_S \):

 \[
 \text{before}(C, \text{New}A, T_S)
 \]

- \(\text{New}A \) does not contain \(q \) in its delete-set:

 \[
 \neg (q \in Os(\text{New}A).del)
 \]

- there is an achiever for \(gi \) called \(W \) which is constrained to be between \(\text{New}A \) and \(C \):

 \[
 \]
\[\exists W \in Os \cdot \\
(\text{before}(\text{NewA}, W, Ts) \land \\
\text{before}(W, C, Ts) \land \\
q \in Os(W).add) \]

Let us return to the example in figure 6.4 of exercise 2 in section 6.4.2. We had assumed above that a goal instance \((q, C)\) had been achieved by action \(A\), and that \(q\) was a member of \(Y\)'s delete-set. After the addition of \(Y\) to the plan (to achieve goal instance \((p, O)\)), the goal instance \((q, C)\) therefore had been clobbered by \(Y\). Consideration of the first condition above leads us to one way of clobbering: the temporal order can have an arc added from \(C\) to \(Y\), to make sure that the clobbering action would be applied after \(C\).

Putting the disjunction of conditions together, the definition of function declobber is formed:

\[
\text{declobber} : \text{Action_instances} \times \text{Bounded_Poset} \times \text{Action_id} \times \text{Goal_instance} \rightarrow B \\
\text{declobber} (Os, Ts, \text{NewA}, \text{mk_Goal_instance}(q, C)) \triangleq \\
\text{before}(C, \text{NewA}, Ts) \lor \\
\neg (q \in Os(\text{NewA}).del) \lor \\
\exists W \in Os \cdot \\
(\text{before}(\text{NewA}, W, Ts) \land \\
\text{before}(W, C, Ts) \land \\
q \in Os(W).add) \\
\]

Exercise 6.5

Consider our running example using figure 6.4 of exercise 2 in section 6.4.2. Under what other conditions (apart from the one we have given above) could goal instance \((q, C)\) be declobbered?

6.4.6 Proof Obligations

We discharge the proof obligation for \(\text{ACHIEVE}_1\), while leaving the proof obligations for \(\text{INIT}\) and \(\text{ACHIEVE}_2\) as an exercise.

Firstly, we make the observation that \(\text{ACHIEVE}_1\) as it stands is not satisfiable! In other words, there is there is a binding of inputs that will result in no output state. This is demonstrated by considering the VDM state output from \(\text{INIT}\) and input to \(\text{ACHIEVE}_1\) : the only ‘action’ in the plan before goal is \(\text{init}\), and if \(gi\) cannot be achieved by \(\text{init}\), then \(\text{ACHIEVE}_1\) will fail. Exercise 6.5 no.5 asks you to find a pre-condition that renders this operation satisfiable.

We can show, however, that if \(\text{ACHIEVE}_1\) outputs a state (and it is non-deterministic in that there may be many states satisfying the post-condition) then the state is valid with respect to the invariant. In the informal proof below, we refer to the invariant’s components (1) through to (6):
• (1) and (2) remain true because O_s is unchanged.

• the truth of (3) is preserved over the state change because the nodes in T_s remain constant, and O_s is unchanged.

• the final two conditions in the post-condition take a g_i from P_s and put it in A_s. By a similar argument to that used to show $MAKEOFFER$’s satisfiability in chapter 3, these two sets stay disjoint, and so (4) is true.

• The specification preserves the sets $P_s \cup A_s$ and O_s, hence (5) is preserved.

To finish, we must show (6) is true in the output state. $ACHIEVE_1$’s post-condition asserts that the new goal instance is achieved, and in the old state we have (asserted by the invariant) that all the other g_i’s were achieved. It remains, therefore, to show that these g_i’s are still achieved in the new state. By exercise 6.4 no 3, the addition of extra temporal constraints into T_s does not invalidate any achieved goal instances, and so, also using the fact that O_s is unchanged, we argue that the final part of the invariant remains intact.

6.5 Summary

In this chapter we have introduced the interesting and non-trivial application of automatic plan generation. Making assumptions about the nature of actions and plans, we created a model of a general planner in VDM.

In section 6.3 we produced an abstract specification of a plan operation, which contained no commitment to any planning algorithm. In section 6.4 we went on to introduce a design level solution to planning in the form of a goal directed algorithm whose basic operation was to achieve goals within a developing, partially ordered plan. We then progressed to modelling the plan as a VDM state, and finally we specified the ‘achieve’ operations on this state.

Additional Problems 6

Some of the Problems below are quite hard. The reader who wants to get a better feel for the specification is encouraged to precede to the next chapter, where it is prototyped.

Problem 1. Specify a function which inputs a $Partial_Plan$ and returns true if the problem it contains has been solved (hint: the problem is solved if all the goal instances in the plan have been achieved).

Problem 2. Perform the proof obligations for $INIT$ and $ACHIEVE_2$.

Problem 3. (project) The four Blocks World $grasp$ actions may be written as one parameterised action (refer to Exercise 2, no. 2):

name: $grasp\ X$
pre-conditions: ‘X is a block’, ‘X has a clear top’, ‘gripper is free’ ;
add-set: ‘gripper grasps X’;
delete-set: ‘X has a clear top’, ‘gripper is free’;

and in general it is much more expedient to pose actions as parameterised structures. Re-specify both design levels of the planner with the extension that actions can be posed with parameters.

Problem 4. (hard) Show that a Partial Plan which has an empty Ps necessarily contains a plan which satisfies the post-condition of PLANNER. Hence demonstrate the connection between the abstract planning specification of PLANNER and the design level planner of section 6.4.

Problem 5. Add a pre-condition to ACHIEVE.2 to make it satisfiable.

Bibliography

Chapter 7

Prototyping VDM Specifications

7.1 Introduction

In this chapter we will describe some of the principles of prototyping model-based specifications, and illustrate the idea by constructing prototypes in the Prolog programming language. Our main example will be prototyping the case study of the last chapter, resulting in a full implementation of the design level specification of the Non-linear Planner, which is supplied in Appendix 1.

Prototyping a model based specification S means translating S into a program P which, though not necessarily satisfying efficiency or other non-functional constraints, is correct with respect to S. This allows the specification to be animated, which enables developers and end users to check early in the development stage that the specification is a valid representation of their requirements. Other advantages include:

- the promise of a working prototype lessens the risk factor involved for a software purchaser: instead of waiting until a full implementation is available, the prototype is a working model which gives a good indication of what the final product will be like;
- constructing a prototype helps in debugging the specification: even after proof obligations have been successfully discharged there may remain errors in the logic;
- it is pleasing, after expending much effort on a static, mathematical specification, to be able to get something working!

If the programming language in which P is created (call it PL) is well chosen, then prototyping P can be a semi-automatic process with a very high degree of certainty that P will be correct with respect to S. To be a good prototyping language, PL should contain constructs that are similar to the specification language (say SL) in which S is written. In effect, this means that the semantic gap between SL and PL should be small with respect to:

- operations: it should be straightforward to translate operations and functions written in SL into PL.

155
data types: PL should either support the same data types as SL, or it should be easy to implement them.

The main difference between an SL and a PL is that a PL has a procedural semantics. This means that a program P written in PL is executable in the sense that it (together with an interpreter for PL) can accept input data and should output data. If P is a correct implementation this input-output relationship will always conform to specification S. For example, with SL = VDM, PL = Prolog, our prototype planning program in Appendix 3 should input planning problems and output solutions conforming to the specification in section 6.4. The relationship between implicit and explicit function definitions is analogous to the relationship between a specification and its prototype. Recall from section 5.2.4, given arbitrary input values for \(exponent_x \), the result that this explicit definition produced was proved to satisfy the post-condition of the implicit operation \(exponent \), given the same inputs.

The main deficiency of prototyped specifications is that they tend to be inefficient in time and space. This is due to two factors:

- a naive implementation: if P is written following the same structure as S, the program itself may be grossly inefficient (some examples of this are given in section 7.3.5).

- compilers producing slow code: good candidates for PL (such as Prolog) have compilers which tend to produce less efficient code than imperative languages (such as Ada or Modula-2). This is not surprising, as imperative languages reflect the prevailing computer architecture.

Another problem faced when prototyping many specifications which concern the functional aspects of software is that an interface must be constructed to handled input and output. In the simplest terms, procedures for efficiently allowing the input of data, and presenting the output in an intelligible form, need to be written.

7.2 Prolog as a Prototyping Language for VDM

7.2.1 Prolog

Prolog is a general purpose logic programming language that was developed in the 1970’s for use in Artificial Intelligence, especially in the area of Natural Language Processing. Although many interpreters, compilers and software development environments exist for it, most dialects conform to a standardised version called Edinburgh Prolog. We will assume that the reader is familiar with Edinburgh Prolog, and use it as our prototyping language (in what follows by Prolog we mean Edinburgh Prolog). Interested readers will find a good introduction to Prolog in [Clocksin and Mellish 84].

There are many advantages in the use of Prolog, including its:
• simple form: A Prolog program is a list of clauses, each clause being a fact or a rule. Facts are predicate structures of the form:

\[
fact_name(t_1,\ldots,t_n).
\]

where \(n \geq 0 \), and each \(t_i \) is a term defined as

- a constant or
- a variable or
- a function symbol containing zero or more terms as arguments.

Rules are of the form

\[
a :- b, c, \ldots, d.
\]

where

- ‘\(a, b, c, \ldots, d \)’ are predicate structures,
- ‘\(a \)’ is called the head of the rule,
- ‘\(b, c, \ldots, d \)’ is called the tail of the rule,
- ‘\(:- \)’ is read as ‘follows from’.

A group of clauses which share the same head predicate is called a procedure.

• ‘dual’ semantics: Prolog programs can be interpreted in two ways:

 - **declaratively**: each clause can be interpreted as a logic formula, generally a fact or a rule. Our typical rule \(a :- b, c, \ldots, d \) corresponds to the logical formula:
 \[
 (b \land c \land \ldots \land d) \Rightarrow a
 \]
 where all variables in the rule are universally quantified.

 - **procedurally**: each clause can be read as a goal oriented procedure, which asserts ‘to solve the head, solve all the predicates in the tail’. The head predicate is akin to a procedure’s heading, whereas the predicates in the tail can be interpreted as procedure calls. One consequence of the goal-oriented interpretation of Prolog’s clauses is that a VDM post-condition can be modelled as a set of Prolog goals to be achieved.

• high level data structures: Prolog’s term and list data structures can be easily adapted to implement VDM data structures.

• backtracking: Prolog’s backtracking mechanism is a form of control which resembles naive search. The search is for instances of a goal predicate’s variables which make a goal succeed. Later we will see how backtracking can be used to prototype existentially quantified conditions in VDM operations.

The first two advantages pointed out above just apply to *Pure Prolog*, a subset of Prolog which does not contain any side effects. Of course, as a programming language Prolog contains expressions which cannot readily be given a logical interpretation, such as *read* and *write* procedures. The language has various other disadvantages of which the user should be aware:
• Prolog is not a strongly typed language, and in fact variables in predicates are not
type-restricted in any way. This means that there is a danger of procedures being
called with unsuitable parameter values. With a strongly typed language (Pascal,
for example) if a procedure is called with too many or the wrong type of argument
values, the implementation would automatically flag a type mismatch at or before
run-time, and the user would be aware of and could pin-point the error. In Prolog
the run-time behaviour in this case would be unpredictable, and the error would
be difficult to detect and fix.

• Prolog has no (standard) module mechanism. This means data type encapsulation
and information hiding are not supported.

• Prolog does not support functional evaluation, except in some special circumstances
such as numerical evaluations. This means that every functional expression in a
VDM condition must be translated into a Prolog procedure which has an extra slot
for an output value. This extra slot contains a dummy parameter which carries the
function value to the next evaluation. For example, consider the following VDM
expression:

\[S \cap \text{dom} \ M \]

where \(S \) is a set, and \(M \) a map. Both functions \(\cap \) and \(\text{dom} \) must be imple-
mented as Prolog procedures. If we let these procedures be called \(\text{dom} _\text{map} \) and
\(\text{intersect} _\text{set} \), then this expression translates to the Prolog predicates:

\[
\text{dom}_\text{map}(M, \text{DomM}), \text{intersect}_\text{set}(S,\text{DomM}, \text{Result})
/* \text{post-condition: Result} = S \cap \text{dom}(M) */
\]

‘DomM’ is the dummy parameter carrying the result of the first function evaluation
to the next evaluation.

• Prolog is case sensitive in that all variables have to start with a capital letter, and
all predicate, function and constant names start with a lower case letter.

7.3 VDM to Prolog Translation

The prototyping process needs to be supported with a set of tools and techniques specific
to Prolog. Firstly, we will show how a set of tools can be created to support VDM data
types; then we will devise a method to translate systematically VDM operations into
Prolog clauses. The fact that the logic of pre- and post-conditions can be reflected within
the declarative semantics of Prolog, makes the translation relatively straightforward,
although one must also be aware of certain pitfalls.

VDM has been successfully prototyped using other programming languages, and various
support kits have been written. For example, ‘me too’ [Henderson and Minkowitz 86]
was an early system for prototyping VDM, using LISP as the target language. As a
preliminary to our implementation fragments below, we set out some conventions for
Prolog:

• code will be put in a bold typeface (unlike pseudo-code which appears in italics);
procedures in the toolkits implementing the Set, Sequence, Map and Composite will have ‘set’, ‘seq’, ‘map’, and ‘comp’ tagged on to the end of their names accordingly;

primitive recursive procedures will be headed with pre- and post-conditions, relating input and output parameters.

output parameters will be placed to the right in a procedure heading, separated from the input parameters by three spaces (there may be occasional exceptions to this, as some parameters may be used for input or output);

where we represent VDM states as parameters below, the input state parameters will be tagged with the letter ‘I’, and output state parameters with the letter ‘O’.

7.3.1 Data Type Implementation

VDM’s Set, Sequence, Map and Composite types can all be implemented quite easily. In this section we show the reader how to implement the Set type only, although implementations of all the four types are given in appendix 3. First it is necessary to represent the Set with a Prolog structure, and to do this we will use Prolog’s List. The examples of sets in chapter 3:

{1, 4, 9, 16, 25, 36, 49, 64, 81}
{1, 2, 3, 5, 7, 11}
{ }

can be written as Prolog lists as follows

[1, 4, 9, 16, 25, 36, 49, 64, 81]
[1, 2, 3, 5, 7, 11]
[]

Recall that whereas in a set representation the left to right ordering of elements is irrelevant, in a list (which is similar to a sequence) different orderings of the same elements denote different lists. Hence a special set equality predicate must be defined, and we do this in terms of the subset (\(\subseteq\)) relation, which in turn will be defined using the ‘element of’ (\(\in\)) relation (refer to section 2.2.3):

\[X = Y \text{ if and only if } X \subseteq Y \land Y \subseteq X \]

\[X \subseteq Y \text{ if and only if } \forall e \in X \cdot e \in Y \]

To implement set equality, we first implement the ‘\(\in\)’ relation using a simple list processing procedure:

```prolog
/* element_of_set(E,Y) */
/* pre: Y is a set */
/* post: E is an element of Y */
/* iff element_of_set(E,Y) succeeds */
/*(1)*/ element_of_set(E,[E|Y]).
/*(2)*/ element_of_set(E,[_|Y]) :-
          element_of_set(E,Y).
```
(1) reads as: 'element_of_set' succeeds if the element to be tested is at the head of the list. The rule in (2) reads as: 'if (1) is not the case, then apply 'element_of_set' to the tail of the list. The empty slot '.' in 'element_of_set([E,[],Y])' represents a variable which we do not need to give a name to (as it is not used elsewhere in the rule). Next we can define subset, and finally the equality predicate (which we call 'eq_set'):

```prolog
/* sub_set(X,Y) */
/* pre: X,Y sets */
/* post: X is a subset of Y */
   iff sub_set(X,Y) succeeds */

sub_set([First_Element|Rest],Y) :-
   element_of_set(First_Element,Y),
   sub_set(Rest,Y),!.

sub_set([],Y).

/* eq_set(X,Y) */
/* pre: X,Y sets */
/* post: X=Y iff eq_set(X,Y) succeeds */

eq_set(X,Y) :-
   sub_set(X,Y),
   sub_set(Y,X),!.
```

Note the use of Prolog's 'cut' ('!') in the last two procedures. The 'cut' is a device to stop Prolog's backtracking mechanism: procedures which are implementing *functions* only have one output value that satisfy their inputs, therefore backtracking within their procedural definition is worthless. Using the 'cut' in the manner above stops backtracking *within* the function definition.

The subset procedure shows the disadvantage of Prolog not being a strongly typed language: the second clause asserts that the empty list (or empty set in our interpretation) is a subset of *anything*. We have to rely on the commented preconditions being followed for the integrity of this procedure. An alternative suggested in exercise 7.2 would be to create the procedure *is_a_set(X)* which checks variables, returning true only if its argument is a set. This way a type mechanism can be implemented on top of Prolog.

The other Set functions introduced in section 3.3.2 are implemented in terms of the 'element_of_set' procedure:

- The union operator '∪':

```prolog
/* union_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X union Y */

union_set([E|X],Y,[E|Z]) :-
   not(element_of_set(E,Y)),
   union_set(X,Y,Z),!.

union_set([E|X],Y,Z) :-
```

element_of_set(E,Y),
union_set(X,Y,Z),!.
union_set([],Y,Y).

- The intersection operator `\cap`:

```prolog
/* intersect_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X intersect Y */

intersect_set([E|X],Y,[E|Z]) :-
element_of_set(E,Y),
intersect_set(X,Y,Z),!.

intersect_set([E|X],Y,Z) :-
not(element_of_set(E,Y)),
intersect_set(X,Y,Z),!.

intersect_set([],Y,[]).
```

- The set difference operator `-`:

```prolog
/* minus_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X minus Y */

minus_set([E|X],Y,Z) :-
element_of_set(E,Y),
minus_set(X,Y,Z),!.

minus_set([E|X],Y,[E|Z]) :-
not(element_of_set(E,Y)),
minus_set(X,Y,Z),!.

minus_set([],Y,[]).
```

Exercises 7.1

These exercises are for those keen on developing their Prolog skills only. Other readers may immediately consult the answers to these exercises in Appendix 3.

1. The VDM primitive function \texttt{tl} can be implemented with just one Prolog fact:

```prolog
/* tl_seq(List_in, List_out): */
/* post: List_out = tl(List_in) */
tl_seq([H|T], T).
```

Implement the rest of the Sequence data structure's functions in Prolog.

2. Implement the Composite and Map types in Prolog, ensuring that the representation of these structures is insulated from the rest of the program. To do this you need to provide the implementations for the procedures specified below, which initialise, add and retrieve values to and from these structures.
7.3.2 Operator Translation

Some basic rules for the translation of VDM operators into Prolog are given below. We start with the assumption that a VDM operator has the following form (similar to the general form used in 3.5.3):

\[
\text{OP_NAME}(i_1:t_{i_1},...,i_n:t_{i_n}) \; o:to \\text{ext \; wr \; s:state_type} \\
\text{pre \; pre}(i_1,...,i_n,s) \\text{post \; post}(i_1,...,i_n, s, o,s)
\]

where \(i_1,...,i_n\) is a list of input parameters, \(o\) an output parameter, and \(t_{i_1},...,t_{i_n}\) to their respective types.

The head of the Prolog procedure that is created from this will have the following form:

\[\text{op}(i_1,..,i_n, s, o, s)\]

Input and output states are represented with explicit parameters, to avoid the problem of managing global data. Otherwise, the VDM state can be represented in Prolog as a collection of facts, or as a single fact, and state changes performed by Prolog’s \textit{assert} and
retract predicates. The ad hoc use of global data effected by assert and retract tends to make Prolog programs unmaintainable.

The op procedure can have a number of clauses, depending on the logical form of the pre- and post-conditions. Disjunction or implication in an operator’s conditions leads to a definition with several clauses. We will assume for the moment that the conditions are conjunctions of predicates without any quantified variables, that is:

\[
\begin{align*}
\text{pre}(i_1, \ldots, i_n, s) &= p_1 \land p_2 \land \ldots \land p_k \\
\text{post}(i_1, \ldots, i_n, \overline{s}, o, s) &= q_1 \land q_2 \land \ldots \land q_l
\end{align*}
\]

Now each of the \(p_i \) and \(q_j \) could be either:

- primitive predicates, pre-defined in VDM, such as ‘\(\in \)’ and ‘\(= \)’, or
- user-defined predicates, such as achieve and before of chapter 6.

We let each of these types of predicates be implemented by a corresponding Prolog procedure: \(\text{proc}_{p_1} \) for \(p_1 \), \(\text{proc}_{q_1} \) for \(q_1 \), and so on. The names \(\text{proc}_{p_1} \), \(\text{proc}_{p_2} \), \ldots represent procedures which may contain input parameters (including the input state parameter). The names \(\text{proc}_{q_1} \), \(\text{proc}_{q_2} \), \ldots each represent procedures, but they may contain references to any input or output parameters or states. A simple monolithic translation, combining pre-condition procedures with those in the post-condition into one clause, gives:

\[
\begin{align*}
op(i_1, \ldots, i_n, o_1, \ldots, o_m, \overline{s}, o, s) :&= \\
\text{proc}_{p_1}, \\
\text{proc}_{p_2}, \\
\ldots, \\
\text{proc}_{p_k}, \\
\text{proc}_{q_1}, \\
\text{proc}_{q_2}, \\
\ldots, \\
\text{proc}_{q_l}.
\end{align*}
\]

The specification of each \(\text{proc}_{p_i} \) is given essentially by treating \(p_j \) as its post-condition. The specification of each \(\text{proc}_{q_j} \) is a little more complicated since these procedures effectively have to achieve the post-condition of \(\text{op} \). In achieving a predicate, there is always the possibility that an already achieved predicate may be un-achieved! The reader should see the parallel with clobbering in the planning application of chapter 6, where the effect of one action could undo the achievement of one goal. The similarity is not surprising since programming to achieve a specification is a form of planning.

In fact the post-condition of \(\text{proc}_{q_j} \) is \(q_1 \land q_2 \land \ldots \land q_j \), since we require \(\text{proc}_{q_j} \) to achieve condition \(q_j \), while preserving conditions \(q_1 \land q_2 \land \ldots \land q_{j-1} \). Although strictly speaking this is the case, it is more expedient to consider \(q_j \) as the post-condition of \(\text{proc}_{q_j} \), and keep a watchful eye that previous predicates are not undone.

A more elaborate way to translate operators into Prolog procedures is to first create a procedure which executes the post-condition procedures only if the pre-condition is met:
\[
op(i_1, \ldots, i_n, o_1, \ldots, o_m, \overleftarrow{s}, s) : - \\
\text{proc}_1, \\
\text{proc}_2, \\
\ldots, \\
\text{proc}_k, \\
\execute_{\text{op _name}}(i_1, \ldots, i_n, o_1, \ldots, o_m, \overleftarrow{s}, s). \\
\op(i_1, \ldots, i_n, o_1, \ldots, o_m, \overleftarrow{s}, s) : - \\
\text{write}('\text{operator pre-condition failure'}). \\
\]

If the pre-condition procedures succeed, the first clause calls \execute_{\text{op _name}} which 'executes' the operator. The second clause outputs an error message if the pre-condition procedures fail, which means the operator cannot be executed. \execute_{\text{op _name}} is defined:

\[
\execute_{\text{op _name}}(i_1, \ldots, i_n, o_1, \ldots, o_m, \overleftarrow{s}, s) : - \\
\text{proc}_1, \\
\text{proc}_2, \\
\ldots, \\
\text{proc}_k.
\]

This second form, although longer, is more secure since errors in the implementation of the post-condition will not be confused with failing pre-conditions. To keep the length of the code fragments in this chapter to a minimum, however, we adopt the first form.

Examples 7.1

1. The estate agent database operator \MAKEOFFER introduced in section 3.5 was defined thus:

 \MAKEOFFER (addr : Address) \\
 \ext \wr \text{forsale, underoffer} : \text{Address-set} \\
 \pre \text{addr} \in \text{forsale} \\
 \post \text{forsale} = \overleftarrow{\text{forsale}} \setminus \{\text{addr}\} \land \text{underoffer} = \overleftarrow{\text{underoffer}} \cup \{\text{addr}\}

 Prototyping \MAKEOFFER is straightforward, because its pre- and post-conditions are conjunctions of predicates. It translates into one clause consisting of primitive procedures:

 \makeoffer(\text{Addr, ForsaleI, UnderofferI, ForsaleO, UnderofferO}) : - \\
 \element_{\text{set}}(\text{Addr, ForsaleI}), \\
 \text{minus}_{\text{set}}(\text{ForsaleI, [Addr], ForsaleO}), \\
 \text{union}_{\text{set}}(\text{UnderofferI, [Addr], UnderofferO}).

2. Consider the \ADD operator of the \.Symbol_table of chapter 4:

 \ADD (i : Identifier, a : Attribute) \\
 \ext \wr \text{s : Symbol_table} \\
 \pre \text{s} \neq [] \land i \notin \text{dom (hd s)}
\[\text{post } s = [(\text{hd } \overrightarrow{s}) \uparrow \{i \mapsto a\}] \sim \text{tl } \overrightarrow{s} \]

Again, the implementation is made up completely from data structure primitives:

\[
\begin{align*}
\text{add}(I, A, SI, SO) :- \\
\& \text{not}(SI = []), \\
\& \text{hd_seq}(SI, SIhd), \\
\& \text{dom_map}(SIhd, \text{DomSIhd}), \\
\& \text{not}(\text{element_of_set}(I, \text{DomSIhd})), \\
\& \text{overwrite_map}(SIhd,I,A, SIhd1), \\
\& \text{tl_seq}(SI, SItl), \\
\& \text{append_seq}([SIhd1],SItl, SO).
\end{align*}
\]

Notice how the dummy variables (SIhd, DomSIhd, SIhd1) are required to store the results of operator evaluation.

Exercise 7.2

1. Prototype the `DELETE_HOUSE`, `PUSH` and `POP` operations of chapters 3 and 4.
2. Create a general translation method for VDM operations which includes conditions containing ‘\(\lor\)’, the logical ‘or’ operator.
3. Implement the type checking predicate `is_a_set(X)`, and hence create a type checking mechanism for the Prolog implementation of VDM data structures.

7.3.3 The Existential Quantifiers

The quantifier ‘\(\exists\)’ invariably occurs in a VDM condition in the following type of expression:

\[
\exists X \in \text{some_set} \cdot p \ldots
\]

where \(X\) occurs as a free variable in \(p\). This can be simulated in Prolog using a free variable for \(X\) in the ‘element_of_set’ procedure. Assuming procedure ‘proc’ achieves predicate \(p\) (that is ‘proc’ is the the prototyped version of \(p\)), the expression above can be translated to the piece of code:

\[
\text{element_of_set}(X, \text{Some_set}), \text{proc}, \ldots
\]

\(X\) will become instantiated with the first element of ‘Some_set’ by the execution of ‘element_of_set’. If ‘proc’ fails with that instantiation, Prolog’s backtracking mechanism will re-call ‘element_of_set’ which will succeed with another instance for \(X\). This will continue systematically (because ‘Some_set’ is implemented as a list) until ‘proc’ eventually succeeds. Hence Prolog’s backtracking mechanism persists in backtracking to ‘element_of_set’ until the correct element is picked. If all elements are exhausted and ‘element_of_set’ eventually fails, the condition cannot be satisfied.
Example 7.2

The RETRIEVE operation in chapter 4 relied on an existentially quantified variable \(b \) in its pre-condition:

\[
\text{RETRIEVE}(i : \text{Identifier}) \quad a : \text{Attribute} \\
\text{ext rd} \quad s : \text{Symbol_table} \\
\text{pre} \quad \exists b \in \text{elems} \quad s \cdot i \in \text{dom} \quad b \\
\text{post} \quad a = \text{get_from_table}(s, i)
\]

This translates into:

\[
\text{retriever}(I, S, \ A) :- \\
\text{elems_seq}(S, \ SetS), \\
\text{element_of_set}(B, \ SetS), \\
\text{dom_map}(B, \ \text{domB}), \\
\text{element_of_set}(I, \ \text{domB}), \\
\text{get_from_table}(I, S, \ A).
\]

In this example, backtracking actually occurs across the middle procedure ‘\(\text{dom_map} \).’ Whatever instance of ‘\(B \)’ the procedure ‘\(\text{element_of_set} \)’ produces, ‘\(\text{dom_map} \)’, being a total function, succeeds. The fourth procedure call in the clause fails until the correct choice of ‘\(B \)’ has been picked.

7.3.4 The Universal Quantifier

The universal quantifier appears in a VDM condition as the existential quantifier above:

\[
\forall X \in \text{some_set} \cdot p
\]

where \(X \) occurs as a free variable in \(p \). To implement this expression in Prolog the procedure (call it ‘\(\text{Proc} \)’ corresponding to the predicate \(p \) has to be called repeatedly for all instances of \(X \) in \(\text{some_set} \). This contrasts with the case of the existentially quantified variable, where only one successful procedure call needs to be made. Also, if the scope of \(X \) is more than one predicate, then \(\text{we let \ 'Proc' correspond to all these predicates} \).

For this implementation we need two special Prolog predicates (the reader who is not too concerned about low level implementation may simply examine the post-condition of the implementing procedure below and move to the next section):

- the meta-predicate \(\text{call}(X) \), which executes its argument \(X \) as a normal Prolog goal.
- the infix operator ‘\(=.. \)’, which succeeds if its right hand argument is a list of terms making up the structure of its left hand argument. For example the Prolog goal ‘\(f(x) =.. X \)’ would succeed with \(X \) bound to \([f, x]\).
Using \textit{call}(X) we can create an iterative procedure with the name ‘\texttt{for_all_els}’ which repeatedly calls the procedure ‘Proc’. This procedure call will have a different value from \textit{some_set} on each invocation:

\begin{verbatim}
/* post: \texttt{for_all_els}(Some_set, Proc) is true
 \hspace{1em} iff for all X in Some_set : p is true */
\end{verbatim}

\begin{verbatim}
for_all_els([], Proc).
for_all_els([E|L], Proc) :-
 Proc =.. OL,
 append(OL,[E], OL1),
 ProcE =.. OL1,
 call(ProcE),
 for_all_els(L, Proc).
\end{verbatim}

For this to succeed, the procedure ‘Proc’ must be defined so that its last argument expects a value from the set \(S\). ‘\texttt{for_all_els}’ is then supplied with the ‘Proc’ procedure instance without its last argument. Then, the three procedure calls

\begin{verbatim}
Proc =.. OL,
append(OL,[E], OL1),
ProcE =.. OL1,
\end{verbatim}

succeed in gluing on an element of ‘\texttt{Some_set}’ to the end of the procedure ‘Proc’, which is then called with the correct number of arguments.

\textbf{Example 7.3}

The specification for \(\texttt{MAX_IN}\) in chapter 3 contained a universal quantifier:

\begin{verbatim}
\texttt{MAX_IN}(s:N\text{-}set) m:N
pre s \neq \{\}
post m \in \; s \land \forall i \in \; i \leq m
\end{verbatim}

It translates as follows:

\begin{verbatim}
\texttt{max_in}(S, M) :-
 not(S = []),
 element_of_set(M, S),
 for_all_els(S, less_eq(M)).
\texttt{less_eq}(M, E) :- M \leq E.
\end{verbatim}

The output parameter ‘\(M\)’ here is systematically instantiated with elements of ‘\(S\)’, until eventually one is found which satisfies the universally quantified condition. Procedures like ‘\texttt{for_all_els}’ that invoke meta-predicates act in a similar fashion to \textit{higher order functions} in functional programming languages.
Exercise 7.3

A complication arises if the universal quantifier occurs in the post-condition, and the predicate \(p \) relates input and output (state) parameters. As each time \(\text{Proc} \) is invoked, its output parameters need to be supplied as input to the next call of \(\text{Proc} \) with a new set element. In this case, the procedure implementing 'for all' must keep track of the changing input parameter as each version of \(\text{Proc} \) is called.

Implement a new version of 'for_all_els' called 'for_all_elsIO' along these lines. It should include two extra arguments for the input and output parameters, as follows:

\[
\text{\(* \) post: for_all_els_IO(S,Proc,In,Out) is true iff}
\quad \text{forall X in S: \(p(In,Out,X) \) is true} \quad */
\]

The answer to this exercise also appears in Appendix 1.

7.3.5 Prototyping Pitfalls

The main problem in producing naive prototypes along the lines above is the threat of producing grossly inefficient code. The implementation of \(\text{MAX_IN} \) was such an example. A more extreme case arises from the specification of a sort function below, which inputs an arbitrary sequence of integers and outputs the ordered sequence:

\[
\text{SORT (in : N*) out : N*}
\quad \text{pre true}
\quad \text{post permutation(in, out) \& ordered(out)}
\]

Assuming \(\text{permutation} \) and \(\text{ordered} \) are defined elsewhere, the naive translation to the top level procedures would be:

\[
\text{sort(In, Out) :-}
\quad \text{permutation(In,Out),}
\quad \text{ordered(Out).}
\]

The implementation that this leads to is very inefficient: the first procedure \(\text{permutation} \) will blindly generate permutations of the initial sequence, until one is eventually found that is ordered. Though the specification of \(\text{sort} \) seems to be a natural one, an implementation that follows its structure is inadequate.

Output state variables and the output parameter in implicitly defined operations can cause related problems. In theory, they are dealt with in a similar way to existentially quantified variables: Prolog's backtracking mechanism iterates until values are found for them which satisfy the post-condition. Unfortunately, in very abstract definitions, this is impractical. An example which we met in chapter 6, was the top level specification of the Planner:

\[
\text{PLANNER (pp : Planning_Problem) soln : Action*}
\]
pre true
post elements \(\text{soln} \subseteq \text{pp.AS} \land \text{complete}(\text{soln}, \text{pp}.I) \land \text{pp}.G \subseteq \text{apply}_\text{seg}(\text{soln}, \text{pp}.I) \)

Taking the predicates in the order they are written, to produce a prototype we might construct a procedure to generate actions sequences from the set of all actions in the planning problem, but this would lead to a hopeless implementation!

One general way of improving efficiency in prototypes is by judicious re-ordering of its procedures, although any ordering of the procedures produced from \textit{SORT} and \textit{PLANNER} would result in at least a very inefficient implementation\(^1\). Specifications such as these would have to be transformed or refined before the kind of method we are advocating would be worthwhile.

We end the section on a more optimistic note: this final example will show how a computationally ‘explosive’ prototype can be rescued and made efficient with a correctness preserving transformation. The before function in chapter 5 was defined with the use of an existential quantifier:

\[
\begin{align*}
\text{before} &: \text{Nodes} \times \text{Nodes} \times \text{Arc-set} \rightarrow \text{B} \\
\text{before} (x, z, p) \triangleq \\
&\exists y \in \text{get nodes}(p) \cdot \text{before}(x, y, p) \land \text{before}(y, z, p)
\end{align*}
\]

Disjunction in the function definition means that the Prolog procedure will have to be split into a list of clauses, one for each formulae connected by the disjunction. In this case we will have two clauses: the first constructs the arc composite, and checks whether it already occurs in the poset \(p \):

\[
\begin{align*}
\text{before}(X, Z, P) :&- \\
&\text{init comp}(\text{arc}, [\text{source, dest}], [X, Y], \text{ARC}), \\
&\text{element of set}(\text{ARC}, P), !.
\end{align*}
\]

The second clause contains the recursive calls, to find arc paths:

\[
\begin{align*}
\text{before}(X, Z, P) :&- \\
&\text{get nodes}(P, \text{Nodes}), \\
&\text{element of set}(Y, \text{Nodes}), \\
&\text{before}(X, Y, P), \\
&\text{before}(Y, Z, P).
\end{align*}
\]

The problem is that the double call to procedure ‘before’ does not lead to a systematic algorithm. A logically equivalent definition is as follows:

\(^1\text{In fact, systematically generating instances of } \text{soln} \text{ from } \text{complete}(\text{soln}, I(pp)) \text{ in a planner corresponds to very inefficient search strategies such as ‘breadth-first search’}.\)
\[
\text{before} : \text{Nodes} \times \text{Nodes} \times \text{Arc-set} \rightarrow \text{B}
\]

\[
\text{before} (x, z, p) \triangleq \\
\text{mk-Arc}(x, z) \in p \land \\
\exists y \in \text{get_nodes}(p) \cdot \text{mk-Arc}(x, y) \in p \land \text{before}(y, z, p)
\]

This version leads to a workable prototype because the search for a path is defined in a systematic manner:

\[
\text{before}(X, Z, P) :- \\
\text{get_nodes}(P, \text{Nodes}), \\
\text{element_of_set}(Y, \text{Nodes}), \\
\text{init_comp}(\text{arc}, [\text{source}, \text{dest}], [X, Y], \text{ARC}), \\
\text{element_of_set}(\text{ARC}, P), \\
\text{before}(Y, Z, P).
\]

Exercises 7.4

1. Prototype the rest of the poset specifications in chapter 5, in Prolog (note that the solution can be found in appendix 1).

2. Using either a formal or diagramatic argument, prove that the two versions of \text{before} given above are equivalent.

7.4 The Planner Prototype

The method described above is used now to prototype the Planner specified in 6.4. Although the implementation of some of the functions is left as an exercise for the reader, the answers can be found in a full listing of the whole prototype in Appendix 1. We develop the prototype in a top-down fashion, rooting the procedures eventually in the primitive data structure functions of 7.3.1.

Each of the three operations \text{INIT}, \text{ACHIEVE}_1 and \text{ACHIEVE}_2 will be translated to a top level Prolog procedure, using the methods outlined above. The efficiency problem is not so acute in this application, because of the fairly concrete, and goal directed nature of the specification. Nevertheless, re-ordering the goals in some of the resulting Prolog clauses certainly makes the prototype more efficient, while preserving the correctness of the code.

7.4.1 The \text{INIT} Operator

The initialisation operator can be translated using the notation introduced in Exercise 7.1 no. 2 for the Composite and Map types. One problem remains - that of set comprehension. Rather than producing a general procedure to deal with set comprehension, we present a specialised solution for the expression:
\{mk-Goal_instance(g,goal) : g ∈ G(pp)\}

This translates into Prolog using a recursive procedure which builds up a set of goal instances as follows:

```prolog
/* make_goal_instances(A, Gs, Gi)          */
/* pre: Gs is a literal set, A is an action identifier      */
/* post: Gi = \{mk-Goal\_instances(g,A) : g is in Gs\} */
make_goal_instances(Action\_Id, G[G\_rest], Gi[G\_rest]) :-
  init_comp(goal\_instance, [gi, ai], [Action\_Id, G], Gi),
  make_goal_instances(Action\_Id, G\_rest, Gi\_rest).
make_goal_instances(_, [], []).```

Making use of this predicate, the translation of the INIT operator is then:

```prolog
init(PPI, PPO) :-
 get_comp(PPI, planning_problem, i, IPP),
 get_comp(PPI, planning_problem, g, GPP),
 init_comp(action, [name,pre,add,del], [init, [], IPP, []], INIT),
 init_comp(action, [name,pre,add,del], [goal, GPP, [], []], GOAL),
 init_map(OS),
 overwrite_map(OS, init, INIT, OS1),
 overwrite_map(OS1, goal, GOAL, OS2),
 make_goal_instances(goal, GPP, GIs),
 initPO(Ts),
 init_comp(partial_plan, [pp,os,ts,ps,as], [PPI,OS2,Ts,GIs,[]], PPO).
```

The proliferation in variable names (OS1, OS2, for example) is not only due to the lack of functional evaluation in Prolog, but also the price of abstraction: whereas we chose to make the representation of sequences and maps visible (as lists), the representation of maps and composites has been hidden within the definition of these structures’ primitive functions.

### 7.4.2 The ACHIEVE Operators

ACHIEVE can now be implemented by a procedure called ‘achieve1’, in which all the procedures are primitive data functions (which were covered in section 7.2) except for the ‘achieve’ predicate itself. As an external state is not accessed, the operation must use an access function (get_comp) to break up the input plan:

```prolog
achieve1(PlanI, Gi, Plan0) :-
 get_comp(PlanI, partial_plan, os, Os),
 get_comp(PlanI, partial_plan, ts, Ts),
 get_comp(PlanI, partial_plan, ps, Ps),
 get_comp(PlanI, partial_plan, as, As),```

element_of_set(Gi, Ps), /* pre-condition */

dom_map(Os, DomOs), /* post-condition: */
element_of_set(A, DomOs),
achieve(Os,Ts,A,Gi, Ts_new),
minus_set(Ps, [Gi], Ps_new),
union_set(As, [Gi], As_new),

put_comp(Plan1, partial_plan, ts, Ts_new, Plan1),
put_comp(Plan1, partial_plan, ps, Ps_new, Plan2),
put_comp(Plan2, partial_plan, as, As_new, Plan0).

Notice how these implementations follow the specification virtually line by line, except that Prolog is more longwinded because of its need for procedures to return function values explicitly. Our ‘predicate to procedure’ correspondence is broken in that the implementation of the ‘achieve’ procedure has as its post-condition two predicates:

\[
\text{achieve}(O_s, T_s, A, g_i) \land \\
\text{is_completion of}(T_s, T_s)
\]

The last conjunction is effectively met if we constrain the implementation of ‘achieve’ so that it only adds constraints to \(T_s\), and adds no new nodes (that is actions). The definition of ‘achieve’ in chapter 6 is:

\[
\text{achieve} : \text{Action instances} \times \text{Bounded Poset} \times \text{Action id} \times \text{Goal instance} \rightarrow \text{B}
\]

\[
\text{achieve} (O_s, T_s, A, \text{mk-Goal instance}(p, O)) \triangleq \\
\text{before}(A, O, T_s) \land \\
p \in O_s(A). \text{add} \land \\
\neg (\exists C \in \text{dom} O_s) \cdot \\
\text{possibly before}(C, O, T_s) \land \\
\text{possibly before}(A, C, T_s) \land \\
p \in O_s(C). \text{del})
\]

It will need to be transformed somewhat, to give a simpler implementation. We move the negation ‘not’ inwards, using the result of exercise 6.7 no. 2, and introduce an auxilliary predicate \text{decoll} _\text{achieve} to produce the new form:

\[
\text{achieve} : \text{Action instances} \times \text{Bounded Poset} \times \text{Action id} \times \text{Goal instance} \rightarrow \text{B}
\]

\[
\text{achieve} (O_s, T_s, A, \text{mk-Goal instance}(p, O)) \triangleq \\
\text{before}(A, O, T_s) \land \\
p \in O_s(A). \text{add} \land \\
\forall C \in \text{dom} O_s \cdot \text{decoll} _\text{achieve}(p, A, O_s, C, T_s)
\]

where:
\[
declobber_achieve(p, A, O, Os, C, Ts) \triangleq \\
C = O \lor \\
C = A \lor \\
before(O, C, Ts) \lor \\
before(C, A, Ts) \lor \\
\neg(p \in Os(C)_del)
\]

Now we have two distinct cases to consider: one in which \textit{achieve} succeeds without changing the input state's temporal order \textit{Ts} at all; and another, in which constraints have to be added to \textit{Ts}. Thus we have the following cases:

- an achieving action 'A' is found for \textit{p}, and no actions present in \textit{Os} clobber (that is undo) this achievement. Therefore no constraint need be added to the temporal order (\textit{Ts} would remain unchanged).
- an achieving action 'A' is found for \textit{p}, but there is at least one action which clobbers \textit{p}, and there is at least one way of declobbering it (that is putting constraints into \textit{Ts} which avoid the goal literal \textit{p} being clobbered).

It is desirable to make the Planner take a \textit{least commitment} approach to forming plans, and so if the first case is true then the second case need not be explored. On the other hand, if the first case is false then we want \textit{ACHIEVE} to be able to make a non-deterministic choice among the set of possible declobbering constraints (potentially therefore, a backtracking mechanism could generate every possible choice). The first part of the \textit{achieve} implementation is (in the code below we put in comments next to a procedure its the corresponding predicate post-condition, where possible):

\begin{verbatim}
achieve(Os,Ts,A,GI, New_Ts) :-
 get_comp(GI,goal_instance, ai, O),
 get_comp(GI,goal_instance, gi, P),
 apply_map(Os,A, ActionA),
 get_comp(ActionA,action,add, AddA),
 element_of_set(p, AddA), /* P is in Os(A)_add */
 make_before(A,0,Ts, Ts1), /* before(A,0,Ts1) */
 dom_map(Os, DomOs),
 for_all_eclsI(DomOs, declobber_achieve(P,A,0,Os), Ts1, New_Ts).
\end{verbatim}

Again, the reader should notice how the code mirrors the specification. One change in ordering we have made is in switching around the 'apply_map' and 'make_before' procedures - this improves the efficiency of the planner.

The 'declobber_achieve' procedure has two parts: the first, where the partial order \textit{Ts} remains unchanged, and the second in which it is necessary to add a constraint. If the first part succeeds we do not require any other alternatives involving temporal constraint additions, therefore Prolog's 'cut' will be used to cut down the alternatives in that case:

\begin{verbatim}
declobber_achieve(P,A,0,Os,0,Ts, Ts) :- !. /* C = O V */
\end{verbatim}
declobber_achieve(P,A,O,Os,A,Ts, Ts) :- !. /* C = A V */
declobber_achieve(P,A,O,Os,C,Ts, Ts) :-
 before(O,C,Ts), !. /* before(O,C,Ts) V */
before(C,A,Ts), !. /* before(C,A,Ts) V */
apply_map(Os,C, CA),
get_comp(CA,action,del, CAD),
not(element_of_set(P,CAD)), !. /* not(p in Os(C).del) */
make_before(0,C,Ts, New_Ts). /* make before(0,C,Ts) */
make_before(C,A,Ts, New_Ts). /* make before(C,A,Ts) */

Finally, the achieve operation is prototyped in a similar manner:

achieve2(PlanI, Gi, Plan0) :-
 get_comp(PlanI, partial_plan, pp, PP),
 get_comp(PlanI, partial_plan, os, Os),
 get_comp(PlanI, partial_plan, ts, Ts),
 get_comp(PlanI, partial_plan, ps, Ps),
 get_comp(PlanI, partial_plan, as, As),
element_of_set(Gi, Ps), /* pre-condition */

 dom_map(Os, DomOs), /* post-condition: */
newid(DomOs, NewA),
add_node(NewA, Ts, Ts2),
get_comp(PP,planning_problem, as, ASpp),
element_of_set(Action, ASpp),
overwrite_map(Os,NewA,Action, Os_new),
achieve(Os_new,Ts2,NewA,Gi, Ts3),
for_all_elsId(As, declobber(Os_new,NewA), Ts3, Ts_new),
get_comp(Action,action,pre, PreA),
make_goal_instances(NewA, PreA, GIs),
minu_set(Ps, [Gi], Ps_new1),
union_set(Ps_new1, GIs, Ps_new2),
union_set(As, [Gi], As_new),
put_comp(Plan1, partial_plan, os, Os_new, Plan1),
put_comp(Plan1, partial_plan, ts, Ts_new, Plan2),
put_comp(Plan2, partial_plan, ps, Ps_new2, Plan3),
put_comp(Plan3, partial_plan, as, As_new, Plan0).
Exercise 7.4

Continue the prototyping exercise. You will need to implement procedures corresponding to the predicates declobber and newid, using the specifications in the last chapter, and also a top level procedure conforming to the algorithm in figure 6.2. Compare your answers with the implementation in the appendix.

5 4-Add all new partial plans generated by step 3 to the Store

7.5 Summary

Prototyping VDM specifications using Prolog involves, firstly, building a set of tools in Prolog to support the Set, Sequence, Map and Composite data structures. VDM operators are then translated into Prolog clauses, roughly by considering each predicate in an operator’s pre- and post-condition as the post-condition of its corresponding Prolog procedure.

The advantages in using Prolog is that there is a correspondence between the Prolog’s declarative semantics and the logic of an operator’s conditions, and that Prolog’s backtracking mechanism can be used to find the correct choice of existentially quantified variables.

The chief disadvantages are in the insecurities of Prolog (it is not strongly typed, it has no data encapsulation mechanisms), and in its lack of functional evaluation, causing long winded implementations.

Additional Problems 7.: Improvements to the Planner and the Prototype

We offer some suggestions for improving and expanding both the specification and the prototype, which the reader may like to take up as a project (these suggestions range from ‘extended coursework’ upwards...)

- After extending the planner so that it accepts parameterised actions (see the additional problems at the end of chapter 6) prototype your new specification.

- A hierarchical planner is one whose domain model must be specified at several levels of abstraction. The planner we have presented is ‘flat’, but it can be extended to plan within a hierarchy with the addition of a refine operation, which can be specified in much the same way as the ‘achieve’ operations. By consulting the A.I. planning literature, try to extend the design level specification to that of a hierarchical planner (for some help in this consult the PhD thesis in [Fox 90]).

- The planning algorithm involves three types of choice: which partial plan to choose from Store, which goal instance to achieve in that plan, and which way to achieve the goal instance. Letting these choices be random is very inefficient. Try to construct heuristic rules which influence these choices.
• Re-arrange the procedures in the achieve procedures to increase the planner’s efficiency. For example, try to cut down the amount of backtracking Prolog has to perform to find an action to achieve a goal.

Bibliography

Chapter 8

Algebraic Specification of Abstract Data Types

8.1 Introduction

In this chapter, we introduce the algebraic approach to specification by looking at its application to the specification of abstract data types. In particular we start by considering one of the classical abstract data types, namely the stack. Although the algebraic approach to specification encompasses a wider class of applications than abstract data types, this particular use captures the spirit of the algebraic approach and so provides a natural and intuitive way of introducing it.

Informally, an abstract data type consists of a collection of values and operations with the values derive their meaning solely through the operations that can be performed upon them. For some time now it has been realized that distinct advantages can result from breaking down the data of a problem into smaller components such as abstract data types, not the least of which is the fact that due consideration of the attributes of the data for a particular problem often reveals an appropriate modularisation of the software itself.

Abstract data types are also important in the context of Object-Oriented Programming Languages (OOPls). The artifacts or objects that are manipulated by a program written in such a language are instances of abstract data types, that is an encapsulated data structure which can only be accessed by a well-defined collection of operations specified in an external interface.

Both the model-based approach (as typified by VDM) and the algebraic approach are classed as so-called “formal methods” for specification, design and refinement. The vital feature of all formal methods is that they are built upon a mathematical framework, so that the powerful proof techniques afforded by mathematics can be brought to bear on the process of verification. In the case of algebraic specifications, the underlying mathematical theory which underpins the approach is equational logic. The mathematical models or interpretations which satisfy the theory are known as algebras of the theory.

Basically, an algebra consists of a set of values called the carrier set of the algebra together
with a collection of operations (mathematical functions) which act upon these values. It was Zilles, back in 1974, [Zilles 74] who first realized that a data type can be considered as an algebra with the resulting implication of using algebras as a means for formally specifying abstract data types. With this approach, an algebraic theory defines types of values in terms of:

1. A *signature* which defines the syntax of the operations of the data type. The signature consists of of a collection of *sorts* (data type identifiers) and operation names. Each operation has an associated sequence of sorts which denotes the domain and range sorts of the operation.

2. A set of *axioms* which relate the operations and which are to be satisfied by the values and operations of the data type using some *interpretation* or *model* of the theory.

One advantage of the algebraic approach is that specifications can be derived and tested using automated tools such as the *executable* algebraic specification language OBJ. This means that the specifications can be interpreted algorithmically and corresponds to the “explicitly defined functions” introduced in chapter 5.

It is important to realise that not all algebraic specification languages are procedurally executable. A non-executable specification language can be thought of as existing at a more abstract level than an executable specification. As such, it can provide a first iteration in the specification process from which an executable version may subsequently be derived.

Although we introduced VDM through both explicit and implicit specifications (corresponding to executable and non-executable specifications respectively), our aim is to concentrate on executable specification languages since we feel that these provide a natural introduction to the subject of algebraic specification. Furthermore, we focus on the application of the algebraic approach to the formal specification of abstract data types. We explain how algebraic specifications are used to describe and clarify the syntax and semantics of an abstract data type and it is this particular aspect of the algebraic approach which is developed here.

8.2 Specification of Abstract Data Types

In the early days, the computer scientist was very much pre-occupied with machine-oriented problems of storage and data representation - *concrete* details. The realisation that data types are not simply a set of values but consist also of a collection of operations which act upon the values led to an awareness of the importance of *data abstraction* for both programming language design and the specification of software systems. In particular, the importance of separating the specification of an abstract data type from its representation has long been recognised with the resulting benefits for the modularisation of software, software reusability and data integrity. This concept is supported by a number of programming languages including Ada and Modula-2. In the case of Modula-2, a *definition module* provides information about the syntax of an abstract data type while the representation of the data type and the implementation of its associated operations
are provided by a corresponding implementation module. The corresponding structures in Ada are provided by the package header (specification) and package body respectively.

As an illustration, consider the specification of an unbounded stack. The stack is an example of a LIFO (last-in-first-out) structure which has many applications in computer science. Yet it is important to realise that the characteristic behaviour of a stack is quite independent of the data it manipulates or the representation of the stack itself. It is the collection of operations which can be performed upon a stack that defines its behaviour. In particular, data values can be pushed onto the top of a stack or popped and retrieved from the top of a non-empty stack so that the behaviour of a stack can be described in terms of the following operations:

- **init**: an operation which creates an initial empty stack.
- **push**: an operation which adds a data element to the top of an existing stack to produce a new stack.
- **pop**: an operation which takes a stack as input and produces a new stack with the top-most element removed.
- **top**: an operation which takes a stack as input and returns the element at the top of the stack.
- **isempty**: an operation which takes a stack as input and returns true if the stack is empty, false otherwise.

As a prelude to the development of an algebraic specification for the stack, it will be instructive to look briefly at how such an abstract data type might be specified in a high-level imperative language such as Modula-2. This will serve not only to introduce some basic terminology and notation which will be used in the subsequent discussion on algebraic specifications, but will also help to put the algebraic approach into sharper perspective. Those not familiar with Modula-2, but with a working knowledge of any procedural language such as Fortran, Pascal or C will find no difficulty in understanding the specification.

With Modula-2, the user of an abstract data type is presented with a signature in the form of a DEFINITION MODULE which specifies the syntax of the components of an abstract data type by means of formal Modula-2 declarations (such as TYPE and PROCEDURE statements). The DEFINITION MODULE presents an external interface to users of the abstract data type and so must provide a clear and precise description of the resources available. In other words, the DEFINITION MODULE must adequately describe “what the abstract data type does”. For a stack of natural numbers (non-negative integers corresponding to the pre-defined data type CARDINAL in Modula-2) with the operations described above, the DEFINITION MODULE is given in Fig. 8.1.

The following points should be noted:

- The representation of the abstract data type Stacks and the implementation of the operations are contained in a corresponding IMPLEMENTATION MODULE, the details of which are hidden from the user and this module is the exclusive
DEFINITION MODULE Stacks;

TYPE Stack; (* opaque type *)

PROCEDURE init() : Stack;
(* operation which creates an initial empty stack *)

PROCEDURE push(s : Stack; n : CARDINAL) : Stack;
(* operation which takes a stack ‘s’ and a natural
 number ‘n’ and returns the stack with ‘n’ added
 to the top of the input stack ‘s’ *)

PROCEDURE pop(s : Stack) : Stack;
(* operation which takes a stack ‘s’ and returns
 the stack with the top-most element removed *)

PROCEDURE top(s : Stack) : CARDINAL;
(* operation which takes a stack ‘s’ and returns
 the natural number on the top of the stack ‘s’ *)

PROCEDURE isempty(s : Stack) : BOOLEAN;
(* operation which takes a stack ‘s’ and returns
 TRUE if the stack is empty, FALSE otherwise *)

END Stacks.

Figure 8.1: Modula-2 signature for an unbounded stack
responsibility of the implementor of the abstract data type. Users can only access and manipulate the data items by means of the operations provided in the DEFINITION MODULE.

- The data type and its operations can be exported which means that other modules can declare variables of that type and modify them using the exported operations.

- The operations are expressed in terms of function procedures, subprograms which return a single result. The type identifier following the final semicolon states the type of the result returned for each function. The reason for using functions to provide all the operations of the abstract data type will be explained shortly.

- Note that the function init() : Stack must be used to create an initially empty stack for each required instance of a stack. Here, it is a function without arguments and so essentially represents a constant value of type Stack. Such “constant” operations (functions) are known as nullary operations.

- One implication of using functions to provide all the operations is that the traditional “pop” operation which removes the top-most element from a stack and returns the value of that top-most element has been separated into two distinct operations. The function pop simply returns the truncated stack while top returns the value of the top-most element of the stack.

- The identifier Stack, following the reserved word TYPE, declares that the data type Stack is opaque. The implementation of such types is hidden from its users and resides in the corresponding IMPLEMENTATION MODULE where the full details of its representation and implementation are given.

- The package specification and package body of Ada are similar to the DEFINITION MODULE and IMPLEMENTATION MODULE of Modula-2 with the access private type of Ada being equivalent to the opaque type of Modula-2.

8.2.1 Sorts and Types of Interest

From the specification presented in Fig. 8.1 we see that the specification of the abstract data type Stacks involves three distinct sets of data values:

- Stack – the set of stacks
- CARDINAL – the set of non-negative integers 0, 1, 2, 3, ...
- BOOLEAN – the set of boolean values true and false

The sets of values CARDINAL and BOOLEAN are built-in data types of Modula-2 and are therefore available for use in the specification of any abstract data type, while the set of values introduced by an abstract data type (Stack for this example) is of fundamental importance and is called the type of interest.

These sets of values which correspond to the familiar data types in programming languages such as Pascal relate to the sorts of an algebraic specification, a term which will be used frequently in the discussion of the algebraic approach.
8.2.2 The Syntax of the Operations

The syntax of an operation can be conveniently described in terms of a *signature*, the style adopted in the algebraic approach. Referring to the operation *init* above, we see that it has no input but returns a value of type `Stack` as its result. We can express this result concisely in terms of a signature and write

\[
\text{init} : \rightarrow \text{Stack}
\]

where the type of the returned result appears after the arrow.

The operation *push* takes a value of type `Stack` together with a natural number and returns a value of type `Stack` as its result. This is expressed by the signature

\[
\text{push} : \text{Stack} \times \text{CARDINAL} \rightarrow \text{Stack}
\]

(This signature can also be written in mathematical style as

\[
\text{push} : \text{Stack} \times \text{CARDINAL} \rightarrow \text{Stack}
\]

where \(A \times B \) denotes the cartesian product of the sets \(A \) and \(B \) and is the set of all ordered pairs of the form \((a, b) \) where \(a \in A \) and \(b \in B \) - see section 2.3).

Similarly, the operation *pop* which takes a value of type `Stack` and returns as its result a value of type `Stack` has signature given by

\[
\text{pop} : \text{Stack} \rightarrow \text{Stack}
\]

Exercise 8.1

Write down the signature for each of the operations *top* and *isempty*.

8.2.3 Constructors and Accessors

Returning to the collection of operations which characterises the stack, we observe that three of the operations, *init*, *push* and *pop* return results of type `Stack`, while *top* and *isempty* return values of type `CARDINAL` and `BOOLEAN` respectively. Operations such as *init*, *push* and *pop* which return a result of type `Stack` are known as *constructor operations* or simply *constructors* while operations such as *top* and *isempty* are known as *accessor operations* or *accessors*.

8.2.4 Exercises

Exercise 8.2
Observe that the task of “popping” a stack has been separated into two distinct operations pop and top. How would the DEFINITION MODULE of Fig. 8.1 be amended if a single operation pop_stack is to be provided which retrieves the top-most element of a stack and produces a new stack with the top-most element removed? Suppose an application requires the entire contents of a non-empty stack to be removed and displayed. This could be achieved as follows:

WHILE NOT isempty(s) DO
 pop_stack(s,value);
 Write(value)
END;

What is the corresponding Pascal-like code fragment using the specification of Fig. 8.1?

Exercise 8.3

Another widely used data structure is the queue which is a FIFO structure (first-in-first-out). The behaviour of a queue can be described in terms of the following set of operations:

- **new**: an operation which creates an initial empty queue.
- **add**: an operation which adds a data element to the end of an existing queue to produce a new queue.
- **remove**: an operation which takes a queue as input and produces a new queue with the front-most (least-recently added) element removed.
- **front**: an operation which takes a queue as input and returns the element at the front of the queue.
- **isempty**: an operation which takes a queue as input and returns true if the queue is empty, false otherwise.

If the data elements of the queue are natural numbers, produce a Modula-2 DEFINITION MODULE Queues for the abstract data type. For example, the procedure remove will have the header

PROCEDURE remove(q : Queue) : Queue;

Demonstrate, by appropriate renaming of the operations (PROCEDURE names) and TYPE identifiers, that the abstract data types Stacks and Queues have the same syntax up to renaming.

8.3 Semantic Specification in Modula-2 and Ada

When we talk about the semantics of an abstract data type, we are referring to the “meaning”, that is the behaviour of its operations. Before embarking on our discussion
of the algebraic approach to specification, let us return to the Modula-2 “specification” of a stack, presented in the DEFINITION MODULE of Fig. 8.1 and examine the nature of the information it conveys to a user. The first point to note is that the information available in the specification is rather restricted.

While it is true that the specification supplies precise syntactic information about each operation of the abstract data type in that the type of each input parameter and the type of the result returned are clearly stated, the use of comments to describe the behaviour of the operations (that is “what the operations do”), poses problems. At best, use of natural language is an informal tool and at worst can often lead to an ambiguous and hazy description of the semantics of an abstract data type.

Another feature of the specification of Fig. 8.1 is that it provides a template that many implementations can fit. For example, in one implementation, the operation top might return the first natural number that was pushed onto the stack (and not the most recent value). Although this is at variance with the accepted behaviour of a stack, nevertheless the syntax of such an abstract data type is still specified by Fig. 8.1. A second implementation that fits the syntactic specification of Fig. 8.1 is the queue where now, push and pop are interpreted as operations which insert and remove a natural number from different ends of a queue. (This example featured in Exercise 8.3 above). Yet a third implementation which fits the specification is one whereby the operation push(s,n) now replaces the top-most element of the stack with the data value n.

On one level, the DEFINITION MODULE of Fig. 8.1 consists of nothing more than a collection of identifiers (names) for the data types and operations (Stack, BOOLEAN, CARDINAL and init, push, pop, top, isempty respectively). Any consistent renaming of these identifiers would still specify a stack and while using obscure names for the types and operations of Fig. 8.1 might appear to result in a less meaningful specification, the comparative clarity of the specification of Fig. 8.1 stems entirely from our familiarity with names such as push and pop. The use of such descriptive names does not endow the specification with a formal semantics.

Identifiers that appear in a DEFINITION MODULE (or package specification) therefore play a purely symbolic role (apart from BOOLEAN and CARDINAL which have an externally defined meaning) in the sense that they show us, for example, whether the values returned by the different operations are the same or not.

The following features emerge from this discussion:

- It is essential that the external interface provided to users of an abstract data type should provide a lucid and unambiguous specification of both the syntax and the semantics of an abstract data type.

- The DEFINITION MODULE (specification package) provides a formal statement of the syntactic component of the specification of an abstract data type, with the semantics of the abstract data type often provided informally by means of comment statements.

- The DEFINITION MODULE defines a template that many different implementations can be engineered to fit.
This last point reinforces the need to provide a *semantic* specification which formally describes the behaviour of the operations of an abstract data type.

It is observations such as these which lead naturally to the use of algebras for specifying an abstract data type. Algebraic specifications are similar in structure to abstract data types. They consist of a set (or sets) of values called *sorts* (which are symbolic set names) together with a collection of operations, each of which is a mathematical *function* defined over the sorts. This is one reason for the choice of *function* procedures in Fig. 8.1 for our Modula-2 specification of a stack. A further reason for confining the operations of an algebraic specification to functions is that *procedures*, which are often used to implement the operations of an abstract data type, have no obvious mathematical counterpart.

Another desirable feature of an algebraic specification is that it too has a number of possible *interpretations* or *models* which are mathematical “implementations” of the specification. These ideas will be developed more fully later when we examine the role of algebras in the specification of abstract data types.

8.4 Algebraic Specification of Abstract Data Types

We have seen that the role of the DEFINITION MODULE in Modula-2 is to provide users with information on the type(s) and operations available to them. The operations specified in the DEFINITION MODULE are available to users of the abstract data type and allow them to manipulate values of the data type in any application program. However, it is these *and only* these operations, as stated in the DEFINITION MODULE which are available to the user. The *representation* of the abstract data type and the *implementation* of the operations are *explicitly* programmed in the corresponding IMPLEMENTATION MODULE by the implementor of the abstract data type which is hidden from the user.

In contrast, for an algebraic specification of an abstract data type, *there is no implementation* – the algebraic specification provides a complete mathematical description of both the syntax and semantics of an abstract data type. Hence, in a sense, the implementation is now shielded not only from the user but from everyone!

The virtue of the algebraic approach to specification is that unlike its Modula-2 and Ada analogues, it also provides a means for specifying the *semantics* of an abstract data type in a formal manner. This is achieved by the use of *equations or axioms* which express relations between the operations in terms of compositions (applications) of two (or more) corresponding functions. Let us now examine the structure of an algebraic specification. An algebraic specification of an abstract data type provides a user with

- the name of the abstract data type
- a collection of sorts, corresponding to the sets of objects (abstract data values) which are manipulated by the operations of the abstract data type
- a collection of operations together with their signatures which provides the syntactic component of the specification of the abstract data type
- a set of equations or axioms which relate the operations and which provides a formal description of their behaviour (the *semantics*) of the abstract data type.

In the algebraic approach, the operations of an abstract data type are implicitly defined in terms of a set of *axioms or equations*, each of which relates two or more of the operations. The operations are therefore defined *implicitly* by relating their meanings to each other and there is no concept of a “state” or “model” as in VDM. These ideas will be explored shortly when we develop an algebraic specification for an unbounded stack of natural numbers.

8.4.1 An Algebraic Specification Language

Throughout this text, we will write algebraic specifications in a *pseudocode* which is similar in style to the algebraic specification language *Axis*. ¹ This specification language provides *clarity* and *conciseness*, two crucially important features for the presentation of any algebraic specification.

The following features of the specification language Axis are supported by most algebraic specification languages

- Although, in the algebraic approach to specification, all abstract data types are specified algebraically, we will assume the availability of three fundamental built-in ("pre-defined") data types and their associated operations. These basic abstract data types will be denoted by

 1. **Natural** with sort `nat`
 2. **Boolean** with sort `bool`
 3. **Identifier** with sort `id`

We will make use of the data type **Natural** with associated sort `nat` which corresponds to the set of non-negative integers (the sort **CARDINAL** of Modula-2) and operations:

 1. `<` (*less than*),
 2. `>` (*greater than*),
 3. `<=` (*less than or equal to*)
 4. `>=` (*greater than or equal to*)

Remember that the specification **Natural** includes both a set *(sort)* of values *(nat)* and a collection of operations.

For the stack example developed in this chapter, the model of **Boolean** merely requires a set containing the two distinguished values which represent the values **true** and **false**. The corresponding sort `bool` is therefore the set `{ **true**, **false** }`. The abstract data type **Boolean** also includes the boolean operations **not**, **and** and **or**.

¹©Hewlett-Packard 1988 [Coleman, Dollin, Gallimore, Arnold and Rush 88]
Also the data type identifier with sort \(\text{id} \) is assumed to be available which supplies a finite set of distinct constants, written as arbitrary strings of characters enclosed between double quotation marks.

It should be realised at the outset that these basic data types can themselves be specified algebraically. We will return to the issue of specifications of “basic” abstract data types shortly.

- We use the convention that operations declared with no operand positions are taken as prefix operations with the operands enclosed in parentheses and separated by commas. This follows the conventional notation used for mathematical functions. For example, the application of a binary operation \(\text{op} \) with declared syntax \(\text{op} : \text{nat} \text{nat} \rightarrow \text{nat} \) with operands 2 and 3 is written \(\text{op}(2,3) \). If we specify explicitly that the signature of \(\text{op} \) is given by

\[
\text{op}___ : \text{nat nat} \rightarrow \text{nat}
\]

then the same application is written as \(\text{op} 2 3 \). In this way, operations can be customised to suit individual applications. The underscore character \(__ \) is used as a \textit{place-holder} to denote the position of the arguments for an operation.

- We use the hyphen for composite identifier names, a convention that will be used throughout this text. The underscore character \(__ \) is used to denote operand positions in function and operation definitions.

- It should be noted that every sort \(s \) is supplied with an equality operation \(== \) with signature

\[
_ == _ : s s \rightarrow \text{bool}
\]

which returns \texttt{true} when the two arguments of the operation are terms that the set of axioms force to be equivalent.

- Each sort is also assumed to be supplied with the conditional operation

\[
\text{IF} _ _ _ _ \text{ELSE} _ _ _ _ \text{ENDIF}
\]

defined by

\[
\begin{align*}
\text{IF} \ \text{true} \ \text{THEN} \ s1 \ \text{ELSE} \ s2 \ \text{ENDIF} &= s1 \\
\text{IF} \ \text{false} \ \text{THEN} \ s1 \ \text{ELSE} \ s2 \ \text{ENDIF} &= s2
\end{align*}
\]

where \(s1 \) and \(s2 \) are universally quantified variables or expressions belonging to sort \(s \).

- We will also assume the availability of the multi-way selection operation

\[
\text{IF} _ _ _ _ \text{ELSE} _ _ _ _ \text{THEN} _ _ _ _ \text{ELSE} _ _ _ _ \text{ENDIF}
\]

- Each axiom will be numbered for ease of reference
8.4.2 Pre-defined Types

Whereas high-level programming languages have “pre-defined” data types, it is important to understand that algebraic specifications have no equivalent structures. If an algebraic specification needs to use a “simpler” abstract data type (such as a boolean type), then that simpler type itself will have been created as an algebraic specification. The additional complexity in notation involved, were we to adopt this principal right from the outset, might confuse rather than enlighten our discussion of the algebraic approach. For this reason, we will use the familiar set of values \{0,1,2,3, \ldots\} to denote the sort nat of natural numbers, although algebraic specifications for these abstract data types will be introduced later.

We assume that the pre-defined specifications are available for use in any specification. To use (“import”) the built-in specifications Natural and Boolean, we will write USING Natural + Boolean.

8.5 Algebraic Specification of an Unbounded Stack

We are now ready to develop an algebraic specification Stack for an unbounded stack of natural numbers.

8.5.1 The Operations and their Syntax

The operations for the data type Stack are

- **init**: an operation which requires no input data and produces a new empty stack as the result.
- **push**: an operation which adds a new natural number to the top of the stack.
- **pop**: an operation which removes the top-most element from a stack to produce a new stack.
- **top**: an operation which returns the value of the top of the stack (without removing it).
- **is-empty?**: an operation which returns **true** if the stack is empty (contains no values) or **false** if the stack contains data values.

with syntax (signature)

```plaintext
OPS

    init  :  -> stack

    push  :  stack nat -> stack
```
pop : stack -> stack

top : stack -> nat

is-empty? : stack -> bool

where the reserved word OPS introduces the list of operations (functions) of an abstract data type and the introduced sort of stack values is denoted by stack. Note that all operations are denoted by functions which return only a single value.

8.5.2 Sorts

The sorts in an algebraic specification are identifiers (symbolic names) for the “abstract data elements” which can be constructed using the operations (functions) defined in the specification. The sorts therefore correspond to the names of data types that would appear in a Modula-2 DEFINITION MODULE that implements that abstract data type. Referring to the functions listed in the OPS declaration above, the sort stack contains items such as init and push(init, 6) which are syntactically legal terms or expressions, constructed from the functions, (that is they conform to the stated signatures of the operations). It is important to understand that these expressions, which result from functional composition of the operations, are the data elements of the specification. When the specification is implemented, each of these data elements (which belong to the sort stack) must map onto some object which implements stack values of the abstract data type.

8.5.3 Axioms for the Unbounded Stack

Two axioms which relate the operations of the abstract data type Stack can be derived immediately by noting that the boolean operation is-empty? applied to an empty stack (denoted by the operation init) will return true. This statement translates into the axiom

is-empty?(init) = true \hspace{1cm} (1)

Consider now the stack produced by pushing the element n (a natural number) onto an existing stack s. The resulting stack is an instance of the set of stack values and corresponds to the application

push(s, n)

Clearly this stack will be non-empty so that the operation is-empty? applied to the stack value push(s, n) will return the value false. This leads to the second axiom

is-empty?(push(s, n)) = false \hspace{1cm} (2)

which holds for all stack values s and natural numbers n.

The remaining four axioms are obtained by considering the outcomes of applying the operations pop and top to an empty and non-empty stack, that is to init and push(s, n) respectively.
One problem, which must now be addressed concerns the outcome of applying \texttt{pop} and \texttt{top} to an empty stack. It is necessary for the developer of the specification to be alert to the need for some decision on handling these \textit{exceptions}. One approach to this problem is to introduce special or distinguished values of the appropriate type (as specified by the syntax of the relevant operation) which are treated as constant (nullary) operations and declared as such.

Since the signature of the operation \texttt{pop} is given by

\begin{equation*}
\texttt{pop} : \text{stack} \rightarrow \text{stack}
\end{equation*}

we introduce the nullary operation \texttt{stack-error} of sort \texttt{stack} so that

\begin{equation*}
\texttt{stack-error} : \rightarrow \text{stack}
\end{equation*}

The result of applying the operation \texttt{pop} to an empty stack then returns \texttt{stack-error}. This is expressed by the axiom

\begin{equation*}
\texttt{pop(init)} = \texttt{stack-error}
\end{equation*}

The outcome of applying \texttt{pop} to the non-empty stack \texttt{push(s,n)} will result in the stack \texttt{s} since if we push a value \texttt{n} onto a stack \texttt{s} and then pop the resulting stack, we recover the original stack \texttt{s}. This result is expressed by the axiom

\begin{equation*}
\texttt{pop(push(s,n))} = s
\end{equation*}

which holds for all stack values \texttt{s} of sort \texttt{stack}, (that is \texttt{s} : \texttt{stack}), and natural numbers \texttt{n} of sort \texttt{nat}, (that is \texttt{n} : \texttt{nat}). We will use the more "formal" notation \(\forall s \in \text{stack}\) and \(\forall n \in \text{nat}\) here, and throughout this section on the algebraic approach, to denote such qualifications. It is worth recalling that in the VDM specification of a stack (chapter 4), we had to prove this property.

In the case of the operation \texttt{top} which returns a value of sort \texttt{nat}, we introduce the nullary operation

\begin{equation*}
\texttt{nat-error} : \rightarrow \text{nat}
\end{equation*}

so that the outcome of applying \texttt{top} to an empty stack is given by the axiom

\begin{equation*}
\texttt{top(init)} = \texttt{nat-error}
\end{equation*}

This is not the only way of dealing with error and exception conditions and a fuller discussion is deferred to the next chapter.

Finally, the operation \texttt{top} applied to the stack \texttt{push(s,n)} will return the most recently added value to the stack, which is the natural number \texttt{n}. This produces the final axiom

\begin{equation*}
\texttt{top(push(s,n))} = n
\end{equation*}

\(\forall s \in \text{stack}\) and \(\forall n \in \text{nat}\).

The complete algebraic specification for the abstract data type \texttt{Stack} can now be presented and is shown in Fig. 8.2.

The following should be noted:
SPEC Stack

USING Natural + Boolean

SORT stack

OPS

init : -> stack

push : stack nat -> stack

pop : stack -> stack

top : stack -> nat

is-empty? : stack -> bool

stack-error : -> stack

nat-error : -> nat

FORALL

s : stack

n : nat

AXIOMS for is-empty?:

(1) is-empty?(init) = true

(2) is-empty?(push(s,n)) = false

AXIOMS for pop:

(3) pop(init) = stack-error

(4) pop(push(s,n)) = s

AXIOMS for top:
8.5.4 Interpretations of a Signature

Lines 3 to 11 of Fig. 8.2 form the algebraic signature for the abstract data type Stack and correspond exactly to the syntactic information provided by the Modula-2 DEFINITION MODULE of Fig. 8.1. For this reason, we can think of the algebraic signature above (lines 3 to 11) as a “trimmed down” version of a public interface which is language-independent. This algebraic signature provides a template or pattern with many possible interpretations. The semantics of the operations is provided by the axioms of the specification and it is these axioms which “narrow the choice” of interpretations to one which has the properties desired by the specifier.
8.5.5 Comparison with VDM

Comparison of the algebraic specification for a stack with the VDM counterpart for a similar structure in Chapter 4 illustrates their different styles. In the algebraic approach, no discrete mathematical structures are used to model the abstract data type and the semantics of the operations are expressed as a set of axioms which relate two or more of the operations. In the case of the VDM specification, the stack is modelled as a sequence (list) and each operation is specified implicitly in terms of pre- and post-conditions which state the properties that must be true before the operation can be applied and must be true after application of the operation.

Exercise 8.4

Although we have not yet discussed the algebraic specification of a queue, consider the abstract data type Queue of Exercise 8.3 with the operations as given. The corresponding algebraic specification will be of the form

```
SPEC Queue

USING Natural + Boolean

SORT queue

....
```

Write down the syntax of the operations for Queue which corresponds to lines 4 to 11 of Fig. 8.2. Produce also the statements and axioms for Queue which correspond to lines 12 to 17 of Fig. 8.2.

8.6 Completeness

On first meeting algebraic specifications, an immediate question arises: how do we know that the given axioms provide a precise definition of the behaviour of the operations for the data type? Loosely speaking, completeness is concerned with the problem of whether there are enough independent axioms to adequately describe the behaviour of the operations of the abstract data type. The set of axioms which define the semantics of an abstract data type should be complete in the sense that:

1. operations must be defined which allow the construction of all possible legal instances (all the values we want) of the abstract data type

2. the results for all legal applications and compositions of the operations must be defined.
As a simple illustration, consider the specification of Fig. 8.2 but with axiom (1) absent. Consider now the outcome of a composition of operations, denoted by \(t \), (such compositions will also be referred to as a stack *expression* or just simply as an *expression* or *term*), where

\[
t = \text{is-empty?}(\text{pop}(\text{push}(\text{init},3)))
\]

Intuitively, the expression \(\text{push}(\text{init},3) \) corresponds to a stack containing the single value 3 so that popping this stack will produce the empty stack (init). Hence the outcome of applying the operation \(\text{is-empty?} \) should recover the result *true*.

Looking at the formal specification of the stack, we observe from the syntax component of the specification, that \(t \) is a legal composition of operations and that the outcome of \(t \) is boolean. Application of axiom (4) reduces the expression \(t \) to give

\[
t = \text{is-empty?}(\text{init})
\]

With axiom (1) absent, no further reduction of \(t \) can be achieved and we are unable to determine the truth value of \(t \) (except to say that the value maps to a new Boolean value which is neither *true* nor *false*). This specification is therefore not complete, since the outcome of this legal expression \(t \) is undefined.

Heuristics have been developed to assist with the axiomatisation for abstract data types and this is discussed in more detail in the next chapter.

Exercise 8.5

Determine which of the following are syntactically legal expressions with respect to the signature of Stack given in Fig. 8.2

1. \(\text{push}(\text{pop}(\text{push}(\text{init},3)),5) \)
2. \(\text{pop}(\text{top}(\text{push}(\text{init},1))) \)
3. \(\text{top}(\text{pop}(\text{push}(\text{init},1))) \)
4. \(\text{push}(\text{push}(\text{init},2),\text{top}(\text{push}(\text{init},2))) \)
5. \(\text{is-empty?}(\text{push}(\text{pop}(\text{push}(\text{init},3)),5)) \)

8.7 Examples of Evaluations

On one level, we can consider the axioms of an algebraic specification as equations and treat the operator " = " in a mathematical sense. In this manner, we can evaluate an expression. In other words, given some syntactically legal expression involving a composition of the operations of the abstract data type, we can use the axioms to transform the given expression into an equivalent form. The principal reason for producing *formal* specifications is that we can reason about them formally using the particular logic or
inferencing system that underpins that specification method. Reasoning with the formal algebraic specification will then assist us in validating whether the introduced operations do indeed have the properties we require. This concept will be illustrated with two examples.

8.7.1 Example 1

As a first example, if the values 2 and 3 are successively pushed onto an initially empty stack and we then recover the top-most element of the resulting stack, we expect to recover the value 3. Expressed formally, given the expression

\[\text{top(push(push(init,2),3))} \quad (1a) \]

we should be able to use the axioms of the specification to show formally that the expression reduces to the value 3.

Firstly, observe that the subterm \(\text{push(init,2)}\) is a stack value so that if we denote this subterm by \(s\), then expression (1a) becomes

\[\text{top(push(s,3))} \quad (1b) \]

Study of the axioms of \texttt{Stack} show that this expression is identical in structure with the left-hand side of axiom (6) if \(n\) has the value 3. It follows from axiom (6) that (1b) evaluates to 3. Hence we have the result

\[\text{top(push(push(init,2),3))} = 3 \]

as expected.

8.7.2 Example 2

If we push the value 1 onto an empty stack, pop the stack and then push the value 4 onto the stack, the resulting stack will contain the single value 4. Application of the operation \texttt{is-empty?} to this stack should therefore return \texttt{false}. Consider

\[\text{is-empty?(push(pop(push(init,1)),4))} \quad (2a) \]

which formally expresses this statement. Although the expression appears alarming at first sight with its composition of four operations, it can be evaluated directly as follows. The first thing to observe is that the subterm \(\text{pop(push(init,1))}\) is a stack value (this follows from inspecting the signature of the operation \texttt{pop}), so denoting this value by \(s\), expression (2a) is given by

\[\text{is-empty?(push(s,4))} \quad (2b) \]

Inspection of the set of axioms for \texttt{Stack} shows that (2b) is exactly of the form given by the left-hand side of axiom (2). We can therefore replace (2b) by the right-hand side of axiom (2), that is by the value \texttt{false}. Hence

\[\text{is-empty?(push(pop(push(init,1)),4))} = \text{false} \quad (2c) \]
This result can be derived another way by looking firstly at the subterm \(\text{pop}(\text{push}(\text{init},1)) \) and this is explored in the following exercise.

Exercise 8.6

Starting with the subterm \(\text{pop}(\text{push}(\text{init},1)) \) of the expression (2a), use the axioms of Stack to show that

\[
\text{is-empty?}(\text{push}(\text{pop}(\text{push}(\text{init},1)),4)) = \text{is-empty?}(\text{push}(\text{init},4))
\]

and hence deduce the result 2(c).

Exercise 8.7

Use the axioms of Stack to reduce all the syntactically legal expressions of Exercise 8.5.

Exercise 8.8

Show, using an argument similar to that used in Example 2 above, that pushing two values onto an empty stack and then popping the resulting stack twice will result in the empty stack.

Exercise 8.9

Evaluate the expressions

1. \(\text{pop}(\text{push}(\text{pop}(\text{push}(\text{init},5)),4)) \)
2. \(\text{pop}(\text{push}(\text{push}(\text{init},\text{top}(\text{push}(\text{init},2))),1)) \)

8.8 Axioms and Term Rewriting

The two evaluations above illustrate how we can “check” an algebraic specification and so determine whether the appropriate inferences can be deduced from it. The technique used is called **term rewriting** whereby each axiom is interpreted as a left to right **rewrite rule**. The operator “= ” of each axiom is now treated as a one-way relation which states how the left-hand side of an axiom can be rewritten (transformed) to its corresponding right-hand side. This mechanism of treating axioms as rewrite rules is a key concept in the algebraic approach to specification and merits further discussion.

Consider the problem of reducing a general expression of the form

\[
t = \text{opa}(\text{opb}(\text{opc}(\ldots \text{opn}(\ldots), \ldots), \ldots), \ldots)
\]

using a set of axioms where \(\text{opa}, \text{opb}, \text{opc}, \ldots, \text{opn} \) denote operations whose domain arguments can themselves contain operations. The first task is to examine the left-hand sides of the axioms looking for those which have \(\text{opa} \) as the left-most operation name. In order to explain the process, we consider a concrete example which should help to convey the mechanics of term rewriting.
To focus our ideas, consider an abstract data type which has four operations defined over
the sorts s1, s2, s3 with syntax

\[
\begin{align*}
\text{opa} & : s1 \ s2 \rightarrow s1 \\
\text{opb} & : s1 \ s2 \rightarrow s2 \\
\text{opc} & : s1 \ s2 \ s3 \rightarrow s1 \\
\text{opd} & : s1 \rightarrow s1
\end{align*}
\]

and consider the reduction of the term t where

\[t = \text{opd}(\text{opa}(\text{opc}(k1,k2,k3), \text{opb}(m1,m2)))\]

where \(k1, m1 \in s1; k2, m2 \in s2\) and \(k3, m3 \in s3\). [Any variable identifier ending with 1
(2 or 3) will be taken to belong to sort s1 (s2 or s3) respectively].

We now look systematically down the set of axioms and look for those whose left-hand
sides have \text{opd} as the left-most operation. (Remember, we are choosing always to work
from the left-hand side of a rule to the right). For the purpose of this discussion, suppose
two such axioms are found :

\text{FORALL}

\[
\begin{align*}
\text{u1} & : s1 \\
\text{u2} & : s2 \\
\text{u3} & : s3
\end{align*}
\]

\text{AXIOMS:}

\[
\begin{align*}
(A1) & \quad \text{opd}(\text{opc}(\text{u1},\text{u2},\text{u3})) = \text{opa}(\text{u1},\text{u2}) \\
(A2) & \quad \text{opd}(\text{opa}(\text{u1},\text{u2})) = \text{u1}
\end{align*}
\]

The next stage in the reduction process is to look at the immediate subterm inside \text{opd}
of the term \(t\) which is \text{opa}(\ldots) and see whether either of the two axioms \((A1)\) and \((A2)\)
has \text{opa}(\ldots) as an immediate subterm. We observe immediately that axiom \((A2)\) has
the required structural form and it is the left-hand side of this rule which we will use to
reduce \(t\).

This stratagem of looking for axioms which are structurally similar to an expression for
the purpose of reducing or simplifying that expression is known as \textit{pattern matching} and
this idea should be familiar to those with a knowledge of Prolog or functional program-
ning languages. The left-hand side of the axiom is treated as a pattern to be matched
with the expression (or a subterm of the expression) we are trying to reduce.
8.8.1 Pattern Matching and Unification

Pattern matching and unification are topics which often present initial difficulties to students who have not met them before so it is worth spending a little time discussing them. The term unification is used extensively in AI and logic programming. It means nothing more than finding a common form for two (or more) terms through the use of a suitable instantiation (substitution) by which they can be made identical. In other words, suppose t_1 and t_2 are two terms, then they are said to be unified if a substitution or sequence of substitutions S can be found which makes the two terms identical.

A set of terms unify if and only if each term of the set is identical or a step by step application of a sequence of legal substitutions makes them identical. Identical in this sense means

- they have the same operation name
- they have the same number of slots (that is to say the same arity)
- they all have identical terms in corresponding slots

Some worked examples should help to clarify these ideas. It is important to realise that variables can match any subterm or expression (in other words, variables do not have to match only with other variables). This is demonstrated in examples 5 and 6 below.

Example 1

\[t_1 = g(x,y,z) \quad \text{and} \quad t_2 = h(x,y,3) \]

These two terms do not unify since they have different operation names (g and h respectively).

Example 2

\[t_1 = f(s,t,u) \quad \text{and} \quad t_2 = f(3,t) \]

These two terms do not unify since they have different arities (3 and 2 respectively).

Example 3

\[t_1 = h(x,y,z) \quad \text{and} \quad t_2 = h(x,y,3) \]

We see at once that t_1 and t_2 can be made identical if we substitute 3 for z in t_1. Hence we have unification under the substitution sequence $z \leftarrow 3$.

Example 4

\[t_1 = g(t,u,v,w) \quad \text{and} \quad t_2 = g(2,u,a,4) \]

In this case, t_1 and t_2 can be made identical with the sequence of substitutions, 2 for t, a for v and 4 for w. The unifier in this example is therefore

\[t \leftarrow 2 \quad ; \quad v \leftarrow a \quad ; \quad w \leftarrow 4 \]

Example 5

\[t_1 = f(x,y) \quad \text{and} \quad t_2 = f(6,p(u)) \]
Here, \(t_1 \) and \(t_2 \) can be made identical if we substitute 6 for \(x \) and \(p(u) \) for \(y \). Hence the unifier in this case is
\[
x \leftarrow 6 \quad ; \quad y \leftarrow p(u)
\]

Example 6
\[
t_1 = \text{opa}(u1,u2) \quad \text{and} \quad t_2 = \text{opa}(\text{opb}(m1,m2),\text{opd}(r1))
\]
The appropriate unifier in this example is
\[
u1 \leftarrow \text{opb}(m1,m2) \quad ; \quad u2 \leftarrow \text{opd}(r1)
\]
We are now in a position to return to our discussion of the reduction of the term
\[
t = \text{opd}(\text{opa}(\text{opc}(k1,k2,k3), \text{opb}(m1,m2)))
\]

8.8.2 Term Rewriting Example

Thus far we have our original expression
\[
t = \text{opd}(\text{opa}(\text{opc}(k1,k2,k3), \text{opb}(m1,m2)))
\]
and an axiom whose left-hand side is structurally of the form \(\text{opd}(\text{opa}(\ldots)) \), that is
\[
(A2) \quad \text{opd}(\text{opa}(u1,u2)) = u1
\]
In order to apply (A2) to reduce \(t \), we now need to find a unifier. From the discussion above, we observe immediately that the relevant unifier is
\[
u1 \leftarrow \text{opc}(k1,k2,k3) \quad ; \quad u2 \leftarrow \text{opb}(m1,m2)
\]
and this result is demonstrated below
\[
\begin{align*}
\text{opd}(\text{opa}(\text{opc}(k1,k2,k3), \text{opb}(m1,m2))) \\
\mid & \mid \backslash------/ \backslash------/ \\
\mid & \mid / \quad / \\
\mid & \mid / \quad \ldots \ldots . / \\
\mid & \mid / / \\
\text{opd}(\text{opa}(u1,u2))
\end{align*}
\]
Having found an axiom whose left-hand side can be pattern matched with a subterm of \(t \), that subterm is rewritten using the corresponding right-hand side of the relevant axiom. For this example, the right-hand side of axiom (A2) is \(u1 \) and since \(u1 \leftarrow \text{opc}(k1,k2,k3) \), the expression \(t \) rewrites to the value
\[
t = \text{opc}(k1,k2,k3)
\]
In general, this process will continue until there are no more axioms which can be pattern matched. A sequence of terms \(t, t_1, t_2, \ldots, t_n \) is thus obtained by repeatedly replacing instances of the left-hand sides of axioms with the corresponding right-hand sides. When the point is reached where no more axioms can be applied, the expression is in a *normal* or *reduced* form and such a normal form will be denoted by \(t \downarrow \).

The discussion thus far has assumed that an axiom can be found at the outset which unifies with \(t \). Suppose now that we wish to reduce the two separate expressions \(t_1 \) and \(t_2 \) where

\[
 t_1 = \text{opa}(\text{opa}(k_1, k_2), m_2)
\]

\[
 t_2 = \text{opa}(\text{opc}(\text{opd}(k_1), k_2, k_3), m_2)
\]

and that there are no axioms with \(\text{opa} \) as the outermost left-most operation on the left-hand side of an axiom. In the case of \(t_1 \), since the immediate subterm of \(t_1 \) also involves the operation \(\text{opa} \), no axioms can be found to reduce \(t_1 \) and it follows that the expression \(t_1 \) is already in a normal (reduced) form.

With regards to \(t_2 \), we start with the subterm \(\text{opc}(\text{opd}(k_1), k_2, k_3) \) and then seek to pattern match this subterm with the left-hand side of an axiom which has \(\text{opc} \) as its outermost operation. The procedure then carries through as before. One important point must be emphasised - it is only the *variables* which appear in axioms that can be substituted for.

These ideas will now be explored further with the help of some examples using the specification Stack.

Exercise 8.10

Use the axioms (A1) and (A2) to reduce each of the terms

(a) \(\text{opd}(\text{opc}(p_1, p_2, p_3)) \)

(b) \(\text{opd}(\text{opc}(\text{opa}(m_1, m_2), r_2, r_3)) \)

Exercise 8.11

Given the additional axiom \(\text{opa}((u_1, u_2), v_2) = \text{opa}(u_1, v_2) \) show that (b) of the previous exercise rewrites to the term \(\text{opa}(m_1, r_2) \).

8.8.3 Term Rewriting for Stack

These ideas are explored further with the help of some examples for the stack. With reference to the specification Stack of Fig. 8.2 consider the term

\[t = \text{push} (\text{pop} (\text{push} (\text{init}, 3)), 1) \]
which has the subterm $u = \text{pop}(\text{push}(\text{init}, 3))$.

The first thing to note for this example is that there are no axioms which have \text{push} as the left-most operation on the left-hand side of an axiom. Therefore, for the first reduction, looking down the list of axioms, we look for any axioms that have \text{pop} as the first operation on their left-hand side. The first such axiom, $\text{pop}(\text{init}) = \text{stack-error}$ cannot be used since \text{init} is not a variable, but the second axiom $\text{pop}(\text{push}(s,n)) = s$ can be applied, with the left-hand side L as $\text{pop}(\text{push}(s,n))$, and the right-hand side R as s. The appropriate unifier is

$$s \leftarrow \text{init} ; \quad n \leftarrow 3$$

or equivalently replace s by init and n by 3.

The subterm u of t is now replaced by the right-hand side of the rewrite rule R, with all variables in the substitutions replaced by their corresponding terms. Hence the subterm u of t rewrites to the value init and the term t becomes

$$t = \text{push}(\text{init}, 1)$$

This term, which corresponds to a stack containing the single value 1, is now in reduced form since there are no axioms which have \text{push} as the outermost operation on the left-hand side of a rule. In general, however, the process will continue until no further reductions are possible.

8.9 Summary

- An algebraic specification language is introduced and used to derive a specification (Stack) for an unbounded stack of natural numbers.
- In the algebraic approach to the specification of abstract data types, operations are modelled using functions.
- The operations of an abstract data type can be classified as either \textit{constructors} or \textit{accessors}. Constructors are operations whose range sort is the same as the sort introduced by the specification. Accessors are operations with ranges of other introduced (imported) sorts.
- An algebraic specification consists of two major components
 1. a syntactic component which provides information on the sort(s) and the domain and range sorts of the operations.
 2. a semantic component which defines the meaning (that is describes the behaviour) of the operations in terms of a collection of axioms which relate two or more of the operations.
- Examples of the evaluation of syntactically legal expressions for the specification Stack are presented whereby the axioms are used to transform the given expression into an equivalent one.
• Each axiom of an algebraic specification can be treated as a one-way *rewrite rule* which specifies how its left-hand side may be rewritten as its right-hand side. This technique is known as *term rewriting*.

• Term rewriting provides a means for “testing” a specification to determine whether the intended properties follow from the stated axioms.

Additional Problems 8.

Problem 8.1

Show, using the axioms of Stack, that pushing three values onto an empty stack and then popping the resulting stack three times results in an empty stack.

Problem 8.2

Suppose a non-empty stack contains the values 3 and 8 with 8 on the top of the stack.

(a) Express this stack, S, in terms of the constructor operations `push` and `init`.

(b) If S is now popped and we then retrieve the top-most element of the resulting stack, we should recover the value 3. Demonstrate this result formally, using the axioms of Stack.

Problem 8.3

Suppose we wish to extend Stack by including an additional operation `is-in?` which takes a stack together with a natural number and returns `true` if that number is present in the stack, `false` otherwise.

(a) State the signature of `is-in?`.

(b) Construct axioms for `is-in?` by considering how the operation acts on `init` and `push(s,n)` where `s ∈ stack` and `n ∈ nat`.

Problem 8.4

In this extended example, we develop a specification of an ordered two-tuple `<f ; s>` whose first and second slots (`f`, `s` respectively) are both natural numbers. In a more generalised form, a tuple is a useful abstract data type since, for example, it provides an abstract model for *record* data types in languages such as Pascal, Modula-2 and Ada. In this example, we will explore also some simple variations on a theme. These include ordered tuples whose elements are composed from different simple data types and ordered *triples*.

The following three mixfix operations are required :

• `<_ ; _>` : an operation which takes two values `f` and `s` where `f, s ∈ nat` and forms the ordered tuple `< f ; s >`.
• 1-st : an operation which takes an ordered tuple and returns the value in the first slot. For example 1-st < 3 ; 5 > = 3.

• 2-nd : an operation which takes an ordered tuple and returns the value in the second slot. For example 2-nd < 3 ; 5 > = 5.

The corresponding algebraic specification Ordered-tuple is shown in Fig. 8.3 where the identifier tuple denotes the sort of ordered tuples.

(a) Identify the constructor and accessor operations.

(b) Consider extending the specification by adding the boolean operation equals? which takes two ordered tuples < f1 ; s1 >, < f2 ; t2 > and returns true if both values in corresponding slots denote identical values (that is if f1 == f2 and s1 == s2) and false otherwise. We can express the signature of this operation in mixfix form as :

```
- equals? - : tuple tuple -> bool
```

(i) is the operation equals? an accessor or constructor operation?
(ii) complete the right-hand side of the axiom satisfied by equals?

```
< f1 ; s1 > equals? < f2 ; s2 > = (f1 == f2) and ??
```

(Note that the boolean operation and is imported from the specification module Boolean).

(c) In order to specify an ordered tuple composed of identifier values, for example

```
< "John" ; "Pascal" >
```

the specification would simply import the built-in specification module Identifier with sort id instead of Natural. Amend the specification Ordered-tuple to accommodate this change.

(d) Suppose now we want to specify an ordered tuple whose first slot is an identifier and whose second slot is a natural number. Adapt the specification Ordered-tuple appropriately.

(e) Adapt Ordered-tuple to specify an ordered triple < f ; s ; t > of natural numbers with f, s, t ∈ nat.
SPEC Ordered-tuple

USING Natural

SORT tuple

OPS

< _ ; _ > : nat nat -> tuple

1-st : tuple -> nat

2-nd : tuple -> nat

FORALL

f , s : nat

AXIOMS

(1) 1-st < f ; s > = f

(2) 2-nd < f ; s > = s

ENDSPEC

Figure 8.3: Algebraic specification of a tuple
Bibliography

Of the many articles and collections of papers on the algebraic approach to specification, one of the most rigorous yet accessible is to be found in:

Of recent books on the algebraic approach to specification, a comprehensive account of the underlying concepts is given in

A brief yet lucid and informative account of the algebraic approach, which is well worth reading, is given in Chapter 9 of

One other book which explores various formal approaches to specification, including the algebraic approach and concentrates, in particular, on explaining the mathematical foundations of such formal methods in software engineering is

Chapter 9

The Queue and Binary Tree

9.1 Introduction

In this chapter, we develop algebraic specifications for two further classical abstract data types namely the queue and the binary tree. The aim of these examples is twofold:

1. to enable the reader to gain further into the algebraic approach by means of specifications of standard data structures

2. to provide a foundation for the subsequent discussion to follow on aspects of the theoretical background of the algebraic approach to specification.

One area that we need to explore concerns the task of deriving a set of axioms for an abstract data type. There are a number of fundamentally important issues that arise from this axiomatisation process, for example: “how many axioms need to be provided?”; “is the set of axioms consistent?”

An algebraic specification is inconsistent if the axiomatisation has undesired consequences such as “subverting” an existing imported specification (for example by identifying terms as equivalent which were meant to be different). Heuristics, in the form of an informal set of rules have been devised which assist with the process of axiomatisation. (Heuristics are simply rules of thumb which usually succeed but are not guaranteed to do so). These ideas are explored at the beginning of this chapter where they are used to develop algebraic specifications for the queue and binary-tree. The use of hidden or private operations is also discussed with an application to the specification of a binary search tree.

We also look briefly at the relation between algebraic specification languages and functional programming languages and we conclude the chapter by looking in more detail at the treatment of exceptions (errors), that is operations defined over only a subset of their domain values.
Figure 9.1: Classification of the operations of an abstract data type

9.2 Atomic Constructors

As we saw in the last chapter, the operations of an abstract data type can be separated into constructors and accessors. Operations with ranges (results) of the sort (data type) being defined are called constructors whereas operations with ranges of other (imported) sorts are called accessors. This separation of operations into two disjoint classes is therefore based upon a syntactic distinction.

We can further divide the constructor operations into two distinct groups, namely atomic constructors (our terminology) and non-atomic constructors. For many abstract data types, including the standard ones such as the stack, queue, list and binary tree, a subset of the constructors can be found such that every syntactically legal term of the principal sort (type of interest) can be represented using a combination of these operations. In the case of Stack, the principal sort is stack and the atomic constructors are init and push. The operation pop is a non-atomic constructor for Stack in the sense that pop merely produces values of the data type (or to be more precise, values of the sort stack) which could have been produced using applications of just the operations init and push.

It must be stressed that stacks have this property not on account of some formal mathematical requirement but because this is the property we require of stacks. More generally, it is important to note that there is no systematic procedure for determining the atomic constructors for an abstract data type. Identification of a collection of appropriate atomic constructors for a new data type results from our understanding and perceptions of the properties of that data type. They are a conceptualisation of our ideas about the values of the abstract data type.

This subdivision of constructor operations into atomic and non-atomic constructors is therefore based upon a semantic distinction. This separation then implies that atomic constructors have the intuitively satisfying property that all instances of the data type can be represented using these atomic constructors. This classification scheme is summarised in Fig. 9.1.

Hence in the case of the abstract data type Stack, an arbitrary stack containing items
\(e_1, e_2, \ldots, e_n (n \geq 1)\) with \(e_1\) on the bottom of the stack, \(e_2\) next to bottom, \(\ldots\), \(e_n\) on top of the stack, is given by the expression

\[
push(\ldots \ push(\ push(\ init, e_1), e_2) \ldots, e_n)
\]

In the case of our example Stack, the accessor operation \(\text{top}\) is also an example of what is called a \textit{selector}. Basically, selectors allow access to individual components of a composite object. In the example of the stack, the operation selects the top-most value from the stack.

Readers should be aware that the terminology associated with the classification of operations is by no means standard and we summarise some of the alternative definitions in use. Some authors partition the operations into three distinct groups, namely \textit{primitive constructors}, \textit{combinatorial constructors} and \textit{accessors}. The term \textit{primitive constructor} describes those nullary operations which yield results of the defined type (principal sort). For example, the operation \textit{init} for our abstract data type Stack is a \textit{primitive constructor} while \textit{combinatorial constructors} are operations like \textit{push} and \textit{pop} which have some of their operands (arguments) in and yield results of the introduced sort (data type). This classification is used by [Liskov and Zilles 75].

9.3 Heuristics for Axiomatisation

Heuristics have been devised to assist in the writing of an appropriate set of axioms for the specification. One such rule entails writing axioms to show how each accessor and non-atomic constructor operation acts upon each of the atomic constructor operations and this approach is exemplified in the specification Stack. In that example, we constructed all axioms with left-hand sides of the form \(\text{op}_{\text{na}}(\text{op}_{\text{atom}})\) where \(\text{op}_{\text{na}}\) denotes a member of the set of accessor and non-atomic constructor operations \{\text{is-empty?}, \text{pop}, \text{top}\} and \(\text{op}_{\text{atom}}\) denotes a member of the set of atomic constructors \{\text{init}, \text{push}\}.

This partitioning of the constructors into those that generate new values of the type (atomic constructors) and those (non-atomic constructors) which just produce values that can also be generated using only the atomic constructors is comparatively straightforward for the classical abstract data types. However, for the beginner, it may not always be easy to separate the constructors into these two groups. The outcome of an incorrect partitioning would be an axiom whose left-hand side would not be supplied with a corresponding “simpler” right-hand side. Such a situation would indicate the need to re-examine the partitioning.

9.4 Algebraic Specification of a Queue of Natural Numbers

Whereas the stack operates on a last-in-first out basis (LIFO), the simple \textit{queue} is a first-in-first-out storage device (FIFO). The data type is composed of a sequence of data elements together with a collection of operations:

- \textit{new} : nullary (constant) operation which returns an empty queue as its result
9.4.1 Axiomatization for Queue

The first thing to note is that the operations new, add and remove are constructors while the introduced sort of the abstract data type is denoted by queue.

Hence the axiomatization will consist of six axioms with left-hand sides given by:

1. \(\text{front}(\text{new}) \)
2. \(\text{front}(\text{add}(q,n)) \)
3. \(\text{is-empty}(\text{new}) \)

The signature of these operations is given by:

- \(\text{add} : \text{operation which adds an element to the end of a queue and produces another queue as its result} \)
- \(\text{remove} : \text{operation which removes the element at the head (front) of the queue to produce another queue as its result} \)
- \(\text{is-empty} : \text{operation which returns the value of the element at the front of the queue} \)
- \(\text{front} : \text{operation which tests whether a queue is empty, returning the value true if the queue is empty or false if the queue is not empty} \)

Suppose we require an additional operation, \(\text{length} \), which returns the length of a given queue (that is the number of elements in the queue). State the signature of \(\text{is-empty} \) and \(\text{length} \) and explain how to add axioms for these operations.

Having completed the syntactic component of the specification, we are now faced with the task of providing a set of axioms which relate the five operations.

Exercise 9.1
4. \(\text{is-empty?}(\text{add}(q,n))\)
5. \(\text{remove}(\text{new})\)
6. \(\text{remove}(\text{add}(q,n))\)

where \(q \in \text{queue}\) and \(n \in \text{nat}\) (that is \(q\) belongs to the sort \(\text{queue}\) and \(n\) is a natural number).

To start, we observe immediately that \(\text{is-empty?}(q)\) should return \text{true} if \(q\) is the empty queue so the corresponding axiom is
\[\text{is-empty?}(\text{new}) = \text{true}\]

Also, the operation \(\text{is-empty?}\) acting on any queue to which an element has been added will return the value \text{false} so that
\[\text{is-empty?}(\text{add}(q,n)) = \text{false}\]

Consider now the operation \(\text{front}\). An attempt to access the front-most element of an empty queue will result in an error, so introducing the error-value
\text{nat-error} : \rightarrow \text{nat}, we have
\[\text{front}(\text{new}) = \text{nat-error}\]

If a natural number \(n\) is added to a queue \(q\), where \(q\) is non-empty, the front-most element of the resulting queue (that is the one at the head of the resulting queue) is just the front-most element of the original queue \(q\). On the other hand, if \(q\) is the empty queue and a natural number \(n\) is added to \(q\), then the front-most element of the resulting queue is simply the value \(n\). The corresponding axiom which states these results is
\[\text{front}(\text{add}(q,n)) = \text{IF is-empty?}(q) \text{ THEN } n \text{ ELSE front}(q) \text{ ENDIF}\]

Consider now the effect of the operation \(\text{remove}\) acting on a queue. If the queue is empty, the effect of attempting to remove the element at the head of the empty queue will result in an error. Introducing the error value \(\text{queue-error}\) with signature
\[\text{queue-error} : \rightarrow \text{queue}\]

this result is expressed by the axiom
\[\text{remove}(\text{new}) = \text{queue-error}\]

If the queue contains a \textit{single} value \(n\), corresponding to the expression \(\text{add}(\text{new},n)\), then application of the operation \(\text{remove}\) to \(\text{add}(\text{new},n)\) will result in the empty queue \(\text{new}\). If, on the other hand, a number \(n\) is added to the end of a non-empty queue \(q\), then the effect of removing the element at the head of the resulting queue, that is \(\text{remove}(\text{add}(q,n))\) is equivalent to first removing the element at the head of the original queue \(q\), and then appending the number \(n\) to the end of that queue, that is \(\text{add}(\text{remove}(q), n)\). We thus have the axiom
\[\text{remove}(\text{add}(q,n)) = \text{IF is-empty?}(q) \text{ THEN } \text{new} \text{ ELSE } \text{add}(\text{remove}(q), n) \text{ ENDIF}\]

This last paragraph certainly demonstrates the superiority of mathematical notation over natural language for stating the semantic properties of the operations of an abstract data type! The complete specification is shown in Fig. 9.2. Four points are worth noting about the specification Queue of Fig. 9.2
SPEC Queue
USING Natural + Boolean
SORT queue

OPS
 new : -> queue
 add : queue nat -> queue
 remove : queue -> queue
 front : queue -> nat
 is-empty? : queue -> bool
queue-error : -> queue
nat-error : -> nat

FORALL
 q : queue
 n : nat

AXIOMS:
(1) front(new) = nat-error
(2) front(add(q,n)) = IF is-empty?(q) THEN n
 ELSE front(q) ENDIF
(3) is-empty?(new) = true
(4) is-empty?(add(q,n)) = false
(5) remove(new) = queue-error
(6) remove(add(q,n)) = IF is-empty?(q) THEN new
 ELSE add(remove(q),n) ENDIF

ENDSPEC

Figure 9.2: Algebraic specification for an unbounded queue
• The boolean condition \texttt{IF is-empty?(q) THEN ...} which appears on the right-hand sides of axioms (2) and (6) could also be written \texttt{IF q == new THEN ...}.

• Note that axioms (2) and (6) are recursive in form, and the use of recursion in the statement of axioms is a feature of many algebraic specifications.

• At first sight, the right-hand side of axiom (6) does not look any simpler than the left-hand side, yet this axiom does indeed effect a reduction as the second example below demonstrates. On a more general point, when constructing the right-hand side of an axiom, care should be taken to avoid rejecting an acceptable expression because it seems at first sight no simpler than the left-hand side.

• With appropriate renamings of the sort and operations of Queue, in particular \texttt{queue \to stack, new \to init, add \to push, remove \to pop, front \to top and queue-error \to stack-error}, the abstract data types Stack (Fig. 8.2) and Queue (Fig. 9.2) have the same syntax (signature). The difference in their semantics is conveyed by the different forms that the axioms for \texttt{top} and \texttt{front}, and \texttt{pop} and \texttt{remove} take.

This last point is important in that it reinforces the observation made in the previous chapter that a signature provides a pattern which \textit{many} different implementations can fit.

9.4.2 Examples of Evaluating Terms

First consider reduction of the term \(t_1 \) where

\[t_1 = \text{front}(\text{add}(\text{add}(\text{new},3),5)) \]

The first thing to note is that the type of the resulting expression is \texttt{nat} since \texttt{front} has signature \texttt{queue \to nat}. The term \(t_1 \) is of the form \texttt{op(subterm)} where \texttt{op} is the accessor \texttt{front} and the subterm is \texttt{add(add(new,3),5)} so that we look down the set of axioms looking for those whose left-hand side is of the form \texttt{front(add ...)}. We need go no further than axiom (2) which provides the appropriate rewrite rule to apply.

Applying axiom (2) with the instantiation

\[q \leftarrow \text{add}(\text{new},3) \quad ; \quad n \leftarrow 5 \]

the right-hand side of axiom (2) produces

\[\text{IF is-empty?(add(new,3)) THEN } 5 \text{ ELSE front(add(new,3)) ENDF} \]

From axiom (4), we observe that \texttt{is-empty?(add(new,3))} is \texttt{false} so that \(t_1 \) rewrites to the term

\[\text{front(add(new,3))} \]
This term can be further reduced by noting that axiom (2) can be applied once again with the instantiation

\[
q \leftarrow \text{new} \quad ; \quad n \leftarrow 3
\]

The right-hand side of axiom (2) now gives

\[
\text{IF is-empty?}(\text{new}) \text{ THEN } 3 \text{ ELSE front(new) ENDIF}
\]

and from axiom (3), since \text{is-empty?}(\text{new}) is true, we recover the normal form of \(t_1 \) which is the natural number 3, so that

\[
t_1 = 3
\]

As a second example, consider the reduction of the term \(t_2 \) given by

\[
t_2 = \text{remove}(\text{add}(\text{add}(\text{new},4),2))
\]

The type of the resulting operation in this case is \text{queue} and looking down the list of axioms for those which have \text{remove} as the left-most operation on their left-hand side, we see that axiom (6) can be applied with the instantiation

\[
q \leftarrow \text{add}(\text{new},4) \quad ; \quad n \leftarrow 2
\]

so that \(t_2 \) rewrites to

\[
\text{IF is-empty?}(\text{add}(\text{new},4)) \text{ THEN new ELSE add(remove(add(\text{new},4)),2) ENDIF}
\]

\(\text{false} \), so that \(t_2 \) rewrites to

\[
t_2 = \text{add}(\text{remove}(\text{add}(\text{new},4)),2)
\]

There are no axioms which have \text{add} as the first operation on their left-hand side. However note that the subterm \(u \) of the outermost \text{add} operation is \text{remove}(\text{add}(\text{new},4)) so that axiom (6) can be applied to the subterm \(u \) with the instantiation

\[
q \leftarrow \text{new} \quad ; \quad n \leftarrow 4
\]

to give

\[
\text{IF is-empty?}(\text{new}) \text{ THEN new ELSE add(remove(\text{new}),4) ENDIF}
\]

and since \text{is-empty?}(\text{new}) is true by axiom (3), the subterm \(u \) rewrites to the term new, that is
\[
\text{remove}(\text{add}(\text{new}, 4)) = \text{new}
\]

It follows that the expression \(t2\) rewrites to the term

\[
\text{add}(\text{new}, 2)
\]

9.4.3 Exercises

The following four exercises are based on the specification \text{Queue} of Fig. 9.2.

Exercise 9.2

A queue \(Q\) consists of a single element \(e1\) so that \(Q = \text{add}(\text{new}, e1)\).

1. Use axiom (2) to show that \(\text{front}(Q) = e1\).
2. Use axiom (6) to show that \(\text{remove}(Q) = \text{new}\).

Exercise 9.3

A queue, \(Q\), consists of two elements \(e1\) and \(e2\) and is given by the expression \(Q = \text{add}(\text{add}(\text{new}, e1), e2)\).

1. Apply axiom (6) once to show that

\[
\text{remove}(Q) = \text{add}(\text{remove}(\text{add}(\text{new}, e1)), e2)
\]

2. Apply axiom (6) once more to show that the subterm \(\text{remove}(\text{add}(\text{new}, e1))\) rewrites to the value \(\text{new}\). Hence show that

\[
\text{remove}(Q) = \text{add}(\text{new}, e2)
\]

and interpret this result.

Exercise 9.4

The abstract data type \text{Queue} can be enlarged by including a further operation \text{join} which takes two queues and appends the second to the first so that the head of one queue follows immediately after the tail of the other queue. The signature of \text{join} is

\[
\text{join} : \text{queue queue} \rightarrow \text{queue}
\]

and the axioms satisfied by \text{join} are

\[
\text{join}(q, \text{new}) = q
\]

\[
\text{join}(q1, \text{add}(q, n)) = \text{add}(\text{join}(q1, q), n)
\]
∀q, q1 ∈ queue and ∀n ∈ nat. The first axiom states that joining an empty queue to a queue q results in q, while the second axiom states that joining a queue to which an element n has been added, to a queue q1 is equivalent to joining q to q1 and adding n to the resulting queue.

If Q consists of the two elements n1 and n2, use the above axioms to express \(\text{join}(Q, Q) \) in terms of the atomic constructors \texttt{new} and \texttt{add}.

Exercise 9.5

Construct axioms for the operation \texttt{length} introduced in Exercise 9.1 using the fact that the length of an empty queue is zero while the length of a queue to which an element has been added is the length of the original queue incremented by one.

9.4.4 Specification of Stack and Queue using VDM

This observation that the syntax of Stack and Queue are identical (with appropriate renamings) yet their axioms are quite different is worth exploring further by comparing the corresponding VDM specifications. To enable direct comparison with the algebraic specifications developed here and in the previous chapter, we model our stack and queue as unbounded sequences of natural numbers. The VDM specifications for Stack and Queue which correspond to the algebraic specifications of Fig. 8.2 and Fig. 9.2 are shown in Fig. 9.3.

Immediately we are struck by the similarity between the VDM specifications for Queue and Stack. In fact, the corresponding operations are identical apart from the operations \texttt{PUSH} and \texttt{ADD}. This contrasts with the behaviour of the algebraic specifications. The reason why the VDM specifications are so similar stems from the fact that both have been modelled using an unbounded sequence. The only difference in behaviour between the stack and the queue is that with the stack, elements are pushed and popped from the same end of the sequence while for the queue, elements are added and retrieved from different ends.

9.5 Algebraic Specification of a Binary Tree

Our next example features the algebraic specification of a familiar data structure, the *binary tree*. Trees are one of the most important nonlinear structures in computer science. In part, this is due to the fact that they provide natural representations for many kinds of hierarchical and nested data that arise in computer applications. File index schemes and hierarchical data base management systems, for example, often make use of tree structures.

This example of the specification of a *binary* tree (a tree where each node has no more than two child nodes) will be further explored later when we discuss *hidden* or *private* operations. For the binary tree, the operations normally required are

- **empty**: allocate and initialise the binary tree
\[
\text{Stack} = \mathbb{N}^* \quad \text{Queue} = \mathbb{N}^*
\]

INIT()
- ext wr \(s : \text{Stack} \)
- pre \(\text{true} \)
- post \(s = [] \)

NEW()
- ext wr \(q : \text{Queue} \)
- pre \(\text{true} \)
- post \(q = [] \)

IS_EMPTY?() \(b : \mathbb{B} \)
- ext rd \(s : \text{Stack} \)
- pre \(\text{true} \)
- post \(b \leftrightarrow (s = []) \)

IS_EMPTY?() \(b : \mathbb{B} \)
- ext rd \(q : \text{Queue} \)
- pre \(\text{true} \)
- post \(b \leftrightarrow (q = []) \)

PUSH(n : \mathbb{N})
- ext wr \(s : \text{Stack} \)
- pre \(\text{true} \)
- post \(s = [n] \sim s \)

ADD(n : \mathbb{N})
- ext wr \(q : \text{Queue} \)
- pre \(\text{true} \)
- post \(q = \text{tl} q \sim [n] \)

POP()
- ext wr \(s : \text{Stack} \)
- pre \(\text{len } s > 0 \)
- post \(s = \text{tl} s \)

REMOVE()
- ext wr \(q : \text{Queue} \)
- pre \(\text{len } q > 0 \)
- post \(q = \text{tl} q \)

TOP() n : \mathbb{N}
- ext rd \(s : \text{Stack} \)
- pre \(\text{len } s > 0 \)
- post \(n = \text{hd } s \)

FRONT() n : \mathbb{N}
- ext rd \(q : \text{Queue} \)
- pre \(\text{len } q > 0 \)
- post \(n = \text{hd } q \)

Figure 9.3: VDM specifications for the unbounded Stack and Queue using lists
• make: operation which takes a data element and two binary trees and constructs
tree with the data element as the root and the two binary trees as left and right
subtrees
• left: operation which takes a binary tree and returns the left subtree
• right: operation which takes a binary tree and returns the right subtree
• node: operation which takes a binary tree and returns the value of the data
element corresponding to the root of the tree
• is-empty?: operation which returns true if the binary tree is empty and false
if the tree is not empty
• is-in?: operation which returns true if a specified data element is present in
the tree and returns false if the data element is not present

As with the previous examples, we assume for the sake of expediency, that the data
elements are natural numbers. The individual signatures of the operations are then
given by

empty : -> binary-tree
make : binary-tree nat binary-tree -> binary-tree
left : binary-tree -> binary-tree
right : binary-tree -> binary-tree
node : binary-tree -> nat
is-empty? : binary-tree -> bool
is-in? : binary-tree nat -> bool

where binary-tree is the sort introduced by the abstract data type Binary-tree.

The atomic constructors for this abstract data type are empty and make since any binary
tree can be constructed using a composition of these two constructors (the operations
left and right are non-atomic constructors for this example and such operations are
sometimes referred to as “destructors”). The complete specification is shown in Fig.
9.4. We have introduced the nullary operation nat-error : -> nat to deal with the
result of trying to access the value corresponding to the root of an empty tree.

9.5.1 Simple Examples of Binary Trees

The following examples should help the reader to relate the formal algebraic specification
of a binary tree presented in Fig. 9.4 with the structures it describes.

For example, the binary tree given by
SPEC Binary-tree

USING Natural + Boolean

SORT binary-tree

OPS
empty : -> binary-tree
make : binary-tree nat binary-tree -> binary-tree
left : binary-tree -> binary-tree
right : binary-tree -> binary-tree
node : binary-tree -> nat
is-empty? : binary-tree -> bool
is-in? : binary-tree nat -> bool
nat-error : -> nat

FORALL
l,r : binary-tree
n,n1 : nat

AXIOMS:
(1) left(empty) = empty
(2) left(make(l,n,r)) = l
(3) right(empty) = empty
(4) right(make(l,n,r)) = r
(5) node(empty) = nat-error
(6) node(make(l,n,r)) = n
(7) is-empty?(empty) = true
(8) is-empty?(make(l,n,r)) = false
(9) is-in?(empty,n) = false
(10) is-in?(make(l,n,r),n1) = If n == n1 THEN true
ELSE is-in?(l,n1)
or is-in?(r,n1) ENDIF

ENDSPEC

Figure 9.4: Algebraic specification for a binary tree
corresponds to the expression

\[\text{make} \left(\text{make}(\text{empty}, 1, \text{empty}), 6, \text{make}(\text{empty}, 2, \text{empty}) \right) \]

while the tree

\[
\begin{array}{c}
\text{6} \\
/ \ \\
1 2 \\
/ \ \\
3 5 4 \\
\end{array}
\]

corresponds to the expression (term)

\[
\text{make} \left(\text{make} \left(\text{make}(\text{empty}, 3, \text{empty}), 1, \text{make}(\text{empty}, 5, \text{empty}) \right), 6, \\
\quad \text{make}(\text{make}(\text{empty}, 2, \text{make}(\text{empty}, 4, \text{empty}))) \right)
\]

It is important to note that there is no implicit ordering among the nodes of the binary tree. In other words, we are not assuming, for example, that all data values in the left-subtree of any given node are less than the value of that node and all data values in its right-subtree are greater than the value at the node.

Exercise 9.6

Use the axioms of Binary-tree, presented in Fig. 9.4 to show that the data element 5 is present in the tree

\[
\begin{array}{c}
\text{9} \\
/ \ \\
4 \ 3 \\
/ \ \\
8 \ 2 \ 5 \\
\end{array}
\]

9.5.2 Tree Traversal

There are three further operations which could have been included in our specification for the binary tree, corresponding to the usual *pre-order*, *in-order* and *post-order* traversal
of a binary tree. A traversal of a binary tree is an operation which accesses each node in the tree exactly once. As each node is encountered, it might be simply printed out or subject to some sort of processing. Each mode of traversal imposes an order in which the nodes are accessed.

For our example, the resulting sequence of values produced can be represented as a queue of natural numbers so that the range of such operations will be of sort queue. The enlarged data type for Binary-tree would thus import Queue and contain the three extra operations:

```
pre-order : binary-tree -> queue
in-order  : binary-tree -> queue
post-order: binary-tree -> queue
```

together with the two extra axioms for each of the three new operations

```
in-order(empty) = new
in-order(make(1,n,r)) = join(add(in-order(1),n), in-order(r))
post-order(empty) = new
post-order(make(1,n,r)) = join(post-order(1), add(post-order(r),n))
pre-order(empty) = new
pre-order(make(1,n,r)) = join(join(add(new,n), pre-order(1)), pre-order(r))
```

The use of recursion produces very elegant axioms for these operations. Their form is easily understood with reference to the mode of traversal:

```
in-order : left -> data element -> right
post-order: left -> right -> data element
pre-order : data element -> left -> right
```

For in-order traversal, start at the root and first traverse each node's left branch, then the node and finally the node's right branch. This is a recursive process since each left and right branch is a tree in its own right. For example, with the tree of Exercise 9.6 above, in-order traversal produces the sequence of values 8 4 2 9 3 5.

For post-order traversal, start at the root and first access each node's left branch, then the node's right branch and finally the node itself. For the tree of Exercise 9.6, the corresponding sequence is 8 2 4 5 3 9.

In the case of pre-order traversal, start at the root and access the node itself, its left branch and finally its right branch. This leads to the sequence 9 4 8 2 3 5 for the tree of Exercise 9.6.

Note the more cumbersome form of the pre-order operation – this stems from the fact that the add operation for Queue places the element at the end of the queue, which means
we can simply use the `add` operation to append the element to the left/right component for in-order/post-order traversal. However, for the case of pre-order traversal, in order to place the element at the front, we need first to create a queue containing the single element `n`, that is `add(new, n)`.

Within the context of programming language execution, compilers utilise tree structures to obtain forms of an arithmetic expression which can be evaluated efficiently. The in-order traversal of the binary tree for an arithmetic expression produces the infix form of the expression, while the pre-order and post-order traversal lead to the prefix and postfix (reverse Polish) forms of the expression respectively. The advantage of reverse Polish notation is that arithmetic expressions can be represented in a way which can be simply read from left to right without the need for parentheses. For example, consider the expression `a * (b + c)`. This expression can be represented by the binary tree

```
    *
   / \
  a   +
   / \
  b   c
```

If we perform a post-order traversal in which we traverse the left branch of the tree, the right branch, followed by the node, we immediately recover the reverse Polish form of the expression, namely `abc*+`. This expression can then be evaluated using a stack. Starting from the left of the expression, each time an operand (one of the numerical values `a`, `b` or `c` in this example) is found, it is placed on the top of the stack. When an operator (`*` or `+`) is read, the top two elements are removed form the stack and the appropriate operator applied to them and the result placed on the stack. When the complete expression has been evaluated, the stack will contain a single item which is the result of evaluating the expression.

9.6 Hidden Operations

In the examples considered so far, we have seen the fundamental role played by the atomic constructors and in particular how every instance of the specified abstract data type can be constructed using just these operations. In the case of the specification `Binary-tree` of Fig. 9.4, the data values at a node of the tree can be *any* natural number. Any arbitrary binary tree is a legal value of the sort `binary-tree` since it can be constructed from the atomic constructors `make` and `empty`.

However, in many applications of binary trees such as sorting and searching, the data elements in the tree are required to have a precise ordering and so we now turn our attention to the specification of an *ordered* binary tree.

The basic problem is that unlike the VDM approach, algebraic specifications do not allow *pre-* and *post-conditions* to be expressed so that the necessary pre-condition that the binary search tree is ordered cannot be stated. One way that algebraic specifications handle this problem is to make use of so-called hidden or private operations.
In the case of the ordered binary tree, the first thing to note is that the constructor make is too general in that it allows for the construction of any binary tree, ordered or not. Therefore we introduce a new constructor operation, called build which strictly preserves the ordering relation between the data elements of the tree and relates it to the general constructor make.

The operation build thus provides the “proper” means for inserting values into an ordered tree. We require the operation build to provide the only means for creating an ordered tree and so insist that the original operation make, present in the specification of the abstract data type Binary-tree must be inaccessible to any specification which imports Binary-tree. (Were the operation make to be available, we would be unable to ensure the integrity of the data type).

To ensure that make is inaccessible we treat the operation as a private operation and declare it thus by prefixing an exclamation mark (!) to its name in the specification. Private operations cannot be used outside the specification module in which they are declared, but may be freely used within it. The result is that !make cannot be exported so that a user views build as the atomic constructor. In other words, any other specification module which uses (imports) the specification Ordered-tree cannot access !make and will view build and empty as the atomic constructors for the data type Ordered-tree. All other operations of Ordered-tree would be available for use by any importing module.

Denoting the sort of ordered binary trees by ordered-tree, the signature of build is

\[
\text{build} : \text{ordered-tree nat} \rightarrow \text{ordered-tree}
\]

The operation build is required to take an ordered binary tree and a natural number n1 and insert n1 into its appropriate location to produce a new ordered tree (provided that n1 is not already present in the tree). Starting at the root of the tree, if n1 is less than the value at the root, go left to the next node; otherwise go right and repeat the process with the new node as the root. The value is inserted into its correct position by making a tree with n1 at the node and empty left and right subtrees.

The corresponding axioms which relate build and !make are therefore:

\[
\text{build}(\text{empty}, n) = \text{!make}(\text{empty}, n, \text{empty})
\]

\[
\text{build}(\text{!make}(1, n, r), n1) = \begin{cases}
\text{!make}(1, n, r) & \text{IF } n == n1 \\
\text{!make}(\text{build}(1, n1), n, r) & \text{ELSEIF } n1 < n \\
\text{!make}(1, n, \text{build}(r, n1)) & \text{ELSE}
\end{cases}
\]

The new constructor build takes on the role of an atomic constructor for the ordered binary tree, as seen from the “outside” and any instance of an ordered tree is then constructed from a composition of build and empty operations. The complete specification Ordered-tree is shown in Fig. 9.5.
Note how axiom (10) for \(\text{is-in?}(\text{make}(1,n,r),n1) \) above differs from the corresponding axiom (10) in the abstract data type Binary-tree given in Fig. 9.4.

9.7 VDM Specification of an Ordered Binary Tree

It will be of interest to compare the algebraic specification Ordered-tree with its VDM counterpart. A binary tree is a recursive data structure in the sense that the structure consists of either an “empty” root node or a root node that has a value together with two further “branches” (left and right) which are themselves further instances of the same data structure. In VDM, we can specify such a data structure using a composite which is recursively defined, with an extension of a type definition method introduced in Chapter 3. Recall that a type can be defined using the bar ‘|’, meaning ‘or’, for example:

\[
\text{type name} = \text{constant1} | \text{constant2} | \text{constant3} | \text{constant4}
\]

These constants, however, can be generalised to be type names, and this gives us a way of ‘unioning’ types. For example, if we wanted to create a type natural numbers with an error value, we would write:

\[
\text{Nat.error} = \mathbb{N} | \text{ERROR}
\]

This allows types to be recursively defined, and, but for syntax, is the same as the signature of a constructor operation in an algebraic specification. The VDM binary tree is defined thus:

\[
\text{Ordered.tree} = \text{Ord.bin.tree} | \text{EMPTY}
\]

\[
\text{Ord.bin.tree::l} : \text{Ordered.tree}
\]

\[
\text{val} : \mathbb{N}
\]

\[
\text{r} : \text{Ordered.tree}
\]

\[
\text{inv mk-Ord.bin.tree(l,val,r)} \triangleq \\
\forall n \in \text{node.values}(l) \cdot n < \text{val} \land \forall n \in \text{node.values}(r) \cdot n > \text{val}
\]

In this definition, we have introduced the function

\[
\text{node.values} : \text{Ordered.tree} \to \mathbb{N} \text{-set}
\]

which retrieves all the node values from an ordered tree and places them in a set. The invariant then states that all natural numbers \(n \) that belong to the set of node values returned from the left subtree of the tree with “val” as the root must be less than \(\text{val} \), and all the numbers returned from the right subtree must be greater than \(\text{val} \).

The introduced function \(\text{node.values} \) is itself defined recursively by observing that we can construct the set of all node values of a given tree by applying \(\text{node.values} \) to the left subtree and the right subtree and taking the union of these two sets with the set \(\{ \text{val} \} \)
SPEC Ordered-tree
USING Natural + Boolean
SORT ordered-tree
OPS
 empty : -> ordered-tree
 build : ordered-tree nat -> ordered-tree
 !make : ordered-tree nat ordered-tree -> ordered-tree
 left : ordered-tree -> ordered-tree
 right : ordered-tree -> ordered-tree
 node : ordered-tree -> nat
 is-empty? : ordered-tree -> bool
 is-in? : ordered-tree nat -> bool
 nat-error : -> nat
FORALL
 l,r : ordered-tree
 n,n1 : nat
AXIOMS:
(1) left(empty) = empty
(2) left(!make(l,n,r)) = l
(3) right(empty) = empty
(4) right(!make(l,n,r)) = r
(5) node(empty) = nat-error
(6) node(!make(l,n,r)) = n
(7) is-empty?(empty) = true
(8) is-empty?(!make(l,n,r)) = false
(9) is-in?(empty,n) = false
(10) is-in?(!make(l,n,r),n1) = IF n == n1 THEN true
 ELSEIF n1 < n THEN
 is-in?(l,n1)
 ELSE is-in?(r,n1) ENDIF
(11) build(empty,n) = !make(empty,n,empty)
(12) build(!make(l,n,r),n1) = IF n == n1 THEN !make(l,n,r)
 ELSEIF n1 < n THEN
 !make(build(l,n1),n,r)
 ELSE !make(l,n,build(r,n1)) ENDIF
ENDSPEC

Figure 9.5: Algebraic specification for an ordered binary tree
where \(val \) is the natural number at the root node. The recursion is terminated by noting that applying \(\text{node_values} \) to an empty tree will produce the empty set \(\{ \} \). This leads immediately to the definition

\[
\text{node_values} : \text{Ordered_tree} \rightarrow \text{N-set}
\]

\[
\text{node_values} (t) \triangleq \\
\text{if } t = \text{EMPTY} \\
\text{then } \{ \} \\
\text{elseif } t = \text{mk-Ord_bin_tree}(l, val, r) \\
\text{then } \text{node_values}(l) \cup \{val\} \cup \text{node_values}(r)
\]

We are now ready to model the operations (recall from chapter 5 that operations which are explicitly defined functions have their names written in lower case).

9.7.1 The VDM Operation \(\text{build} \)

The first operation is \(\text{build} \) which inserts a number into an ordered tree. This operation must preserve the data type invariant and can be specified thus:

\[
\text{build} : \text{Ordered_tree} \times \text{N} \rightarrow \text{Ordered_tree}
\]

\[
\text{build}(t, n) \triangleq \\
\text{if } t = \text{EMPTY} \\
\text{then } \text{mk-Ord_bin_tree}(\text{EMPTY}, n, \text{EMPTY}) \\
\text{elseif } t = \text{mk-Ord_bin_tree}(\text{leftsub}, \text{value}, \text{rightsub}) \land n < \text{value} \\
\text{then } \text{build}(\text{leftsub}, n) \\
\text{elseif } t = \text{mk-Ord_bin_tree}(\text{leftsub}, \text{value}, \text{rightsub}) \land n > \text{value} \\
\text{then } \text{build}(\text{rightsub}, n)
\]

This algorithm for \(\text{build} \) will ensure that the data type invariant is satisfied. It is left as an exercise for the reader to show that the invariant is preserved each time a value is inserted into an ordered tree.

9.7.2 The VDM Operations \(\text{left_tree} \) and \(\text{right_tree} \)

The operations \(\text{left} \) and \(\text{right} \) are rather more straightforward.

\[
\text{left} : \text{Ordered_tree} \rightarrow \text{Ordered_tree}
\]

\[
\text{left}(t) \triangleq \\
\text{if } t = \text{EMPTY} \\
\text{then } \text{EMPTY} \\
\text{elseif } t = \text{mk-Ord_bin_tree}(l, val, r) \\
\text{then } l
\]

Similarly
right : Ordered_tree → Ordered_tree
right(t) △
 if \(t = \text{EMPTY} \)
 then \(\text{EMPTY} \)
 else if \(t = \text{mk-Ord-bin-tree}(l, \text{val}, r) \)
 then \(r \)

9.7.3 The VDM Operation node

This operation returns the root of the tree:

node : Ordered_tree → N
node(t) △
 if \(t = \text{mk-Ord-bin-tree}(\text{leftsub}, \text{value}, \text{rightsub}) \)
 then \(\text{value} \) else \(\text{EMPTY} \)

9.7.4 The VDM Operation is_empty?

The operation is_empty? returns true if and only if the tree is equal to the constant EMPTY:

is_empty? : Ordered_tree → B
is_empty?(t) △
 if \(t = \text{EMPTY} \)
 then \(\text{true} \) else \(\text{false} \)

9.7.5 The VDM Operation is_in?

The operation IS_IN? checks whether a specified data value is present in the tree. It makes use of our auxiliary function node_values:

is_in? : Ordered_tree → B
is_in?(t) △
 if \(n \in \text{node_values}(t) \)
 then \(\text{true} \) else \(\text{false} \)

9.8 Functional Programming Languages and Data Types

It may seem strange at first sight that an abstract data type can be specified completely with just a collection of operations together with a set of axioms which relate these operations. However, if we think of the operations as functions, then this is similar to the approach adopted in functional programming.
Functional programming languages and *executable* algebraic specification languages do have a number of features in common. A functional program consists essentially of a collection of equations which define various functions. Functions are not restricted to “normal” data types, they can take functions as inputs and return a function as a result. Therefore, loosely speaking, functional programs consist of a number of equations whose left- and right-hand sides can contain compositions (combinations) of functions. Similarly, the semantics of the *operations* of an abstract data type are expressed in terms of a collection of axioms or equations which involve compositions (applications) of two or more operations.

The similarity in style between algebraic specifications and functional languages is illustrated in Fig. 9.6 which is a *Miranda* \(^1\) script (program) which implements the data type *queue*. In common with most modern programming languages, Miranda has facilities which support data types and one such feature is the so-called “algebraic type”. Such types are characterised by a set of constructors (which are precisely the *atomic constructor* operations of algebraic specifications).

Referring to the Miranda script of Fig. 9.6, the statement

\[
\text{queue ::= New | Add \ queue \ num }
\]

introduces the data type *queue* where, following BNF notation, the symbol ::= means “comprises” and the symbol | denotes alternate constructors. (In Miranda, constructors must start with an upper case letter). The constructor Add takes two parameters, a queue and a number.

The following three statements state the signature of the three operations *remove*, *front* and *isempty* while the six function definitions provide the semantics of the data type *queue* and correspond to the *axioms* of our algebraic specification. Note that Miranda employs postfix notation. Any conditions placed on the definition of a function (known as *guards* in Miranda) appear on the far right following the comma and the reserved word if. These guards must be predicate expressions which can be interpreted as either Tru e or False.

For the queue q1 defined by

\[
q1 = \text{Add (Add (Add New 3) 4) 5}
\]

the applications

(a) \text{front q1}

(b) \text{remove q1}

(c) \text{isempty q1}

result in the evaluations

(a) 3

\(^1\)©Miranda is a trademark of Research Software Ltd
respectively.

This similarity in style between executable algebraic specification languages and declarative or functional programming languages explains, in part, why such languages (for example, Miranda and SML) provide natural vehicles for rapid prototyping. In rapid prototyping the aim is to develop a trial model of a system quickly which exhibits all the important features of the intended system, but without the expenditure of excessive resources. Such prototyping provides a means for the production of a correct, although often inefficient implementation. This feature was introduced in chapter 7 and will be developed further in chapter 13 where we discuss prototyping algebraic specifications.

Often, however, at the end of the day, implementations are required which use some target high-level procedural language. In this case proofs that the implementation meets the specification should be carried out using the semantics of that target language. The onus on the implementor of the data type is to prove that every axiom and theorem of the algebraic specification is satisfied by the corresponding implementation. In practice, it usually suffices to prove that the axioms for each operation are satisfied by that operation's implementation. This proof obligation of verifying that an implementation satisfies its corresponding algebraic specification is an area of study that has still not been satisfactorily addressed in computer science. We will look briefly at some of the issues involved with respect to proof obligations for algebraic specifications later in chapter 12.

Exercise 9.7

Implement the algebraic specifications Binary-tree and Ordered-tree (Fig. 9.4 and Fig. 9.5 respectively) in Miranda.

9.9 Errors and Algebraic Specifications

An abstract data type will often have situations in which it is not meaningful to apply certain operations. For the stack, attempting to pop an empty stack or attempting to remove the top-most element from an empty stack are two such abnormal situations. The basic problem is that these operations possess domain values with no corresponding range value and they are partial in the sense described in sections 5.2.5 and 2.5.4. It is vital that an algebraic specification should not only formally describe the behaviour of the operations of an abstract data type for normal situations but also in these abnormal or exceptional ones.

The problem of dealing with errors in algebraic specifications is not as straightforward as might be supposed. Some of the methods described in the early literature for treating error values were not mathematically sound and in an attempt to put error handling onto a rigorous footing, techniques were developed which turned "a little local difficulty" into a "major mathematical mayhem". This particular aspect of algebraic specification is, however, not as awkward as some critics of the approach would have us believe.
Miranda implementation of the adt "queue"

queue ::= New | Add queue num

the 'operations' of the adt "queue" are

remove :: queue -> queue
front :: queue -> num
isempty :: queue -> bool

the 'axioms' for the adt "queue":

front New = error "invalid application of 'front' to an empty queue"
front (Add q n)
 = n , if isempty q
 = front q , otherwise

isempty New = True
isempty (Add q n) = False

remove New = error "invalid application of 'remove' to an empty queue"
remove (Add q n)
 = New , if isempty q
 = Add (remove q) n , otherwise

Figure 9.6: Miranda definition of the abstract data type Queue
To date, we have handled errors by the seemingly simple expedient of introducing an additional constant *error value* of the appropriate sort. In the case of Stack, for example as given in Fig. 8.2, we introduced the nullary operations

\[\text{stack-error} : \rightarrow \text{stack} ; \text{nat-error} : \rightarrow \text{nat} \]

to accommodate the outcomes of applying *pop* and *top* to an empty stack. This approach was adopted initially at the outset to allow the reader to gain an *immediate* foothold onto algebraic specification without getting bogged down with the subtleties of error handling. It is now time to appraise the implications of the use of error values.

9.10 Use of Error Values

This approach to error handling is similar to that deployed in some of the early literature on algebraic specification, by authors such as [Guttag 77]. However, the technique does have its problems. To see the difficulties which arise, consider the reduction of the term

\[\text{top}(\text{push}(\text{pop}(\text{init}),3)) \] \hspace{1cm} (E1)

for the unbounded stack of Fig. 8.2. Using *normal-order evaluation* in which expressions are evaluated from the “outside in”, we can apply axiom (6) and (E1) rewrites directly to the value 3.

On the other hand, using *applicative-order evaluation* in which the innermost arguments of expressions are evaluated first, we can apply axiom (3) first to replace *pop(init)* by *stack-error* so that (E1) rewrites to

\[\text{top}(\text{push}(\text{stack-error},3)) \]

which is undefined since the outcome of *push(stack-error,3)* has not been specified by the axioms.

This example highlights two deficiencies of our approach for dealing with errors, namely *non-unique termination* and an *incomplete semantics*. On the first point, we see that the two strategies for reducing (E1) result in two different outcomes. The resulting reduced form is not unique and depends on the order in which the axioms are applied. Hence, even with small specifications, the “simple” expedient of introducing special or *distinguished* values (constants) to denote error values produces a specification with a set of axioms that does not produce unique rewrites for *all* syntactically legal expressions.

On the second point, we recall that a set of axioms is semantically complete if the outcomes of *all* syntactically legal compositions of operations are defined by the axioms. With reference to the specification of Fig. 8.2, although the outcomes of terms such as *pop(init)* and *top(init)* are defined by the axioms, the outcomes of syntactically legal terms such as *pop(pop(init))* and *top(pop(init))* are not. Also, what are we to make of stack expressions such as

\[\text{push}(s,\text{top}(\text{init})) \]
where \(s \in \text{stack} \)? This rewrites to the expression \(\text{push}(s, \text{nat-error}) \) which is from sort \(\text{stack} \). We can envisage applying additional \(\text{push} \) operations on this stack using “safe” data values \(n \) (that is \(n \in \text{nat} \) and \(n \neq \text{nat-error} \)). The result of such a sequence of applications would be a stack value with a concealed error lurking somewhere inside. This level of “uncertainty” is totally inappropriate for a \textit{formal} specification.

9.10.1 Strictness and Implicit Axioms

We have seen that the basic problem with using error values is non-unique termination and an incomplete semantics. A sensible and natural way of dealing with these is to include an additional set of \textit{implicit} axioms. A plausible set of such axioms for the stack is

\[
\begin{align*}
\text{push}(\text{stack-error}, n) & = \text{stack-error} \\
\text{push}(s, \text{nat-error}) & = \text{stack-error} \\
\text{pop}(\text{stack-error}) & = \text{stack-error} \\
\text{top}(\text{stack-error}) & = \text{nat-error}
\end{align*}
\]

where \(n \in \text{nat} \) (which includes the value \text{nat-error}) and \(s \in \text{stack} \) (which includes the value \text{stack-error}).

We can achieve unique reductions for a given expression by constraining the order in which axioms are applied. For example, axioms whose right-hand sides are error values should be applied \textit{first} to reduce any term or subterm that evaluates to an error value. Such axioms should be applied, wherever appropriate, \textit{before} any “normal” (non-error) axioms. In other words, any stack with an error value lurking inside is considered to be a totally erroneous stack value, denoted by the single value \text{stack-error}. The use of such implicit axioms then ensures unique \textit{termination}, (that is a unique result when evaluating and reducing any given expression) and such an axiomatisation is said to have \textit{strictness}.

However, problems still arise with the completeness of such a specification. Since all erroneous stack values reduce to \text{stack-error} which is a member of the sort \text{stack}, we need to consider the outcome of the syntactically legal term \text{is-empty?(stack-error)}. Clearly neither \text{true} nor \text{false} is apt so we need to include an additional error value in the sort \text{bool} resulting in a three-valued Boolean type which, at the very least, is counter to our perceived notions of the nature of a Boolean type. Fortunately, exceptions can be handled much more simply using \textit{subsorts}.

9.11 Subsorts and Subtypes

We take the view that exceptions (errors) in algebraic specification languages are treated most simply using \textit{subsorts} and \textit{overloaded operations}. This approach provides a satisfyingly simple yet natural way of dealing with errors. In the case of the stack, for example,
the idea is to introduce a subset of non-empty stack values, ne-stack and declare that the operations pop and top are defined only on this subset. The fact that operations are defined over a subset, and therefore undefined over part of a domain, implicitly defines erroneous applications and so provides a means of error detection. (This is very much in keeping with our adopted stance to formal specification). This is a similar but simpler idea to that of restricting a type in VDM with a data type invariant. Alternatively, a supersort which includes the sort stack (and so itself contains both init and "non-empty" stack values) can be introduced which allows the inclusion of error messages and other exception handling mechanisms. The inclusion of "distinguished" error values into a specification can be accomplished by introducing supersorts which contain appropriate error messages and which are used to handle exceptions. Our reservations about this approach have been explained above; however for those interested, the approach is outlined in the additional exercises at the end of this chapter.

The concept of subsorts is intimately tied up with the idea of subtypes provided in languages such as Pascal, Modula-2 and latterly by Ada. Programmers are used to the idea of one set of data values being contained in or containing another. In Pascal and Modula-2, the subrange type supports this application where, for example, the Pascal code fragment

```pascal
TYPE exam_marks = 0 .. 100;
```

declares that the data type `exam_marks` is the set of integers which lie in the range 0 to 100. Here, the data type `exam_marks` is a subtype of the pre-defined data type `INTEGER`. Another example of a subtype is the pre-defined data type `CARDINAL` of Modula-2 which is a subtype of another pre-defined type `INTEGER`. (Equivalently, we might say that `INTEGER` is a "supertype" of `CARDINAL").

9.11.1 Operation Overloading

Overloading is the technique of using the same symbol name to represent more than one operation and it is present, to a certain extent in many programming languages. With the example above, we can overload the Boolean-valued operation "<" so that it can be used to compare integer or examination mark operands, despite the fact that the underlying operations are different. Similarly, in Modula-2, the addition operation + defined by

```
_ + _  :  CARDINAL CARDINAL -> CARDINAL
```

is a restricted form of the operation

```
_ + _  :  INTEGER INTEGER -> INTEGER
```

Here, the operation + is overloaded and the meaning of an overloaded operation is determined from the context provided by the types of its parameters (operands). Overloading is an essential feature for algebraic specifications based on subsorts. We do not want to have to devise new operation names for what are essentially similar operations, such as
push1 : stack nat -> ne-stack

push2 : ne-stack nat -> ne-stack

simply because they have different domain sorts. Without the facility to overload operations, the resulting proliferation of operation names will add to the complexity of a specification and obscure its meaning. A more detailed discussion of subsorts and operation overloading is presented in chapter 13.

9.12 Error Detection and Error Handling

There are other ways of handling exceptions (errors) and we present a brief overview of some of them. This section is included for completeness only and can be omitted on a first reading.

One method used to treat errors in algebraic specifications involves constructing a specification in two stages. Initially, a specification, is derived which deals exclusively with normal situations (which provides a partial semantics for the operations). Subsequently, all abnormal situations are included. Roughly speaking, we can think of the first stage of the specification as providing error detection with the second stage of the specification dealing with error handling.

There are a number of variations on this theme, but common to all is the need to include additional axioms and Boolean-valued operations or functions (sometimes referred to as safety-markers). These extra operations indicate whether an object is safe ("ok") or unsafe, returning the value true for the safe object and false for the latter. For example with the stack, the constructor init denotes a safe object while push(s,n) is safe if and only if s and n denote safe objects. On the other hand, the values stack-error and nat-error denote unsafe objects. The safety-markers appear on the right-hand sides of an axiom. We can give a flavour of their use by showing an application to our old friend, the stack and consider how the axioms for the operation pop are affected. Introducing the safety-marker (operation) okstack : stack -> bool with the axioms

\[
\text{not okstack}(s) = (s == \text{stack-error})
\]

\[
\text{not okstack}(\text{push}(s,n)) = \\
(s == \text{stack-error}) \text{ or } (n == \text{nat-error}) \text{ or } (\text{not okstack}(s))
\]

the axiom for pop takes the form

\[
\text{pop}(s) = \text{IF okstack}(s) \text{ THEN } \\
\text{ \ \ \ \ IF s == \text{init} \text{ THEN } \\
\text{ \ \ \ \ \text{stack-error} } \\
\text{ \ \ \ \ ELSE s1 \text{ WHERE } s = \text{push}(s1,n) } \\
\text{ \ \ \ \ ENDIF } \\
\text{ \ \ \ \ ELSE \text{stack-error}}
\]
with similar guarded axioms for the operations \texttt{top} and \texttt{is-empty}?.

It is interesting to note that some of the early algebraic specification languages, including the executable language \texttt{OBJ0} used a similar construction. The operations of an algebraic specification were separated into three kinds, \textit{normal} or “ok” operations, \textit{abnormal} or “error” operations and finally \textit{recovery} or “fix” operations. The axioms, referred to as \textit{equations} in \texttt{OBJ}, were then separated into “ok-equations” and “error-equations”.

The fundamental criticism with this general approach is that although it provides specifications with a complete semantics, unique term rewriting and error handling and recovery capabilities, it also leads to a proliferation of error values and error axioms for even the simplest abstract data type. The added complexity for larger specifications results in cumbersome and often unreadable specifications. There is no doubt that this treatment of errors obscures the intrinsic simplicity and elegance of the algebraic approach. Indeed, this may have been one of the reasons which led to the abandonment of this approach for error handling in the later version of the language \texttt{OBJ2}.

The approach we have adopted, based upon the idea of \textit{subsorts}, was developed by [Goguen 78] and has a number of advantages, not the least of which is that it avoids the questionable concept of linking sorts with error values which, at this formal level, are nothing more than symbolic objects anyway. Another advantage of the approach is that it preserves the clarity and conciseness of the algebraic technique. No implicit axioms or hidden boolean operations have to be introduced and the technique preserves the preciseness and readability which is the essence of the algebraic approach. It is for these reasons that we have adopted the sort approach to handle exceptions.

9.13 Specification of a Stack

We apply the technique of domain subsorts to the specification of an unbounded stack of natural numbers and the corresponding specification \texttt{Stack-nat} is shown in Fig. 9.7. The essence of this approach to exceptions is to observe that \texttt{pop} and \texttt{top} are total on the subsort \texttt{ne-stack} of non-empty stacks and then declare that these operations are only defined on this subsort. Observe first that the specification \texttt{Stack-nat} of Fig. 9.7 introduces two sorts, namely \texttt{stack} and \texttt{ne-stack}. The statement

\[
\text{SUBSORT ne-stack < stack}
\]

will be used to express the fact that \texttt{ne-stack} is a subsort of \texttt{stack}. Note also that since the outcome of pushing a value onto any stack will result in a non-empty stack, the signature of \texttt{push} is given by \texttt{push : stack nat -> ne-stack}.

Exercise 9.8

Recast the specification \texttt{Queue} using this approach by introducing a subsort \texttt{ne-queue} of non-empty queues. You will need to redefine the domain sorts of the operations \texttt{front} and \texttt{remove} and produce four axioms.
SPEC Stack-nat

USING Natural + Boolean

SORTS stack ne-stack

SUBSORT ne-stack < stack

OPS

 init : -> stack

 push : stack nat -> ne-stack

 pop : ne-stack -> stack

 top : ne-stack -> nat

 is-empty? : stack -> bool

FORALL

 s : stack

 n : nat

AXIOMS

(1) is-empty?(init) = true

(2) is-empty?(push(s,n)) = false

(3) pop(push(s,n)) = s

(4) top(push(s,n)) = n

ENDSPEC

Figure 9.7: Algebraic specification of a stack using domain subsorts
9.14 Summary

- Algebraic specifications for two classical abstract data types, namely the *queue* and the *binary tree* are derived.

- *Atomic constructors* are a subset of the constructors which have the property that every value of the principal sort (type of interest) can be represented using a composition (combination) of constructors drawn from this subset.

- The remaining constructors which are not atomic are called *non-atomic constructors*.

- Heuristics have been devised to guide the specifier in writing an appropriate collection of axioms. One such rule involves writing axioms to show how each accessor and non-atomic constructor operation acts upon each of the atomic constructors.

- *Hidden*, also called *private* operations are introduced into a specification when some kind of *pre-condition* needs to be stated. Hidden operations are introduced in situations where the required values of a sort need to be "restricted" to conform to some "well-definedness" predicate. The specification *Ordered-tree* for an ordered binary tree is an example where the well-definedness predicate is "that the data elements of the tree are required to have a precise ordering".

- The treatment of errors is discussed and the implications of using error values are explored. Problems of an incomplete semantics can arise with this approach.

- The use of subsorts to handle errors is explained and the advantages of adopting this approach are discussed.

Additional Exercises – 9.

Exercise 9.1

A queue Q contains the three data values 5, 7 and 9 with 5 at the front of the queue and 9 at the end.

(a) Express Q in terms of the *atomic* constructors *add* and *new*.

(b) Use the axioms of *Queue* to reduce the term *remove(Q)*.

Exercise 9.2

Use the axioms of *Queue* to show that

\[
\text{front(remove(add(add(new, 2), 4)))} = 4
\]

Exercise 9.3

Suppose we wish to extend *Queue* by including an additional operation *is-in?* which takes a queue together with a natural number and returns *true* if that number is present in the queue, *false* otherwise.
(a) State the signature of \texttt{is-in}.

(b) Construct axioms for \texttt{is-in} by considering how the operation acts on \texttt{new} and \texttt{add(q,n)} where \(q \in \text{queue} \) and \(n \in \text{nat} \).

\textbf{Exercise 9.4}

(a) Express the following binary tree in terms of the atomic constructors \texttt{make} and \texttt{empty}.

\[
\begin{array}{c}
1 \\
/ \ \ \\
2 \ \ 5 \\
/ \ / \\
3 \ 6 \ 4
\end{array}
\]

(b) Use the axioms of \texttt{Binary-tree}, to show that the data element 2 is present in the tree.

(c) Use the axioms of \texttt{Binary-tree}, to show that the data element 7 is not present in the tree.

\textbf{Exercise 9.5}

The ordered binary tree, shown below

\[
\begin{array}{c}
4 \\
/ \ \\
3 \ 6
\end{array}
\]

is constructed from the data values 4, 6 and 3, with 4 at the root of the tree and corresponds to the term

\[
\texttt{build(build(build(\texttt{empty},4),6),3)}
\]

Use the axioms of \texttt{Ordered-tree} to show that this expression rewrites to the term

\[
!\texttt{make(!\texttt{make(\texttt{empty},3,\texttt{empty}),4},!\texttt{make(\texttt{empty},6,\texttt{empty})})}
\]

To start, you should demonstrate that

\[
\texttt{build(build(\texttt{empty},4),6)} = !\texttt{make(\texttt{empty},4, \texttt{make(\texttt{empty},6,\texttt{empty})})}
\]

\textbf{Exercise 9.6}

In this extended example, a specification for a simple \textit{directory} which stores a table of user-names with their corresponding user-number will be developed. We can take the set
of user-names to come from the sort id supplied by the pre-defined abstract data type
identifier and the user-numbers to come from the sort nat.

This example will explore the use of hidden operations for the specification and show
their use for constraining the values of an abstract data type.

We will assume that all user-names which have no user-numbers yet allocated are given
the default user-number 0. This has the effect of ensuring that the mapping is total.
We require that user-name with corresponding user-number pairs can be inserted into a
directory and also removed from a directory. The specification of the abstract data type
Directory-Map with introduced sort dir will therefore need the operations:

- \(< _ > : \text{nat} \rightarrow \text{dir}\)
- \(_ _ _ _ \rightarrow _ _ _ \text{to} _ _ : \text{dir id nat} \rightarrow \text{dir}\)

The first operation creates an initial directory in which no user numbers have been
allocated. The domain value specifies an appropriate default user-number (which we
have already chosen to be 0).

The second operation adds a \text{user-name}, \text{user-number} pair to a directory to produce a
new directory, regardless of whether the user-name or user-number is already present in
the existing directory.

These two operations provide the \text{atomic} constructors for Directory-Map from which all
values of the directory can be built. For example, the directory containing the three
\text{user-name}, \text{user-number} pairs \text{("John", 23)}; \text{("Ann", 9)} and \text{("Lee", 16)} will cor-
respond to the expression:

\(< 0 > \ [\text{"John" to 23}] \ [\text{"Ann" to 9}] \ [\text{"Lee" to 16}] \quad (D1)\)

Three further operations to be included are:

- \(_ _ _ \text{remove} _ : \text{dir id} \rightarrow \text{dir}\)
- \(_ _ _ \text{number} _ : \text{dir id} \rightarrow \text{nat}\)
- \(_ _ _ \text{is-in?} _ : \text{dir id} \rightarrow \text{bool}\)

The operation \text{remove} takes a directory together with a user-name and removes the
 corresponding \text{user-name}, \text{user-number} pair from the directory. For example:

\((< 0 > \ [\text{"John" to 23}] \ [\text{"Ann" to 9}] \ [\text{"Lee" to 16}]) \text{remove "Ann} \)
produces the directory

\(< 0 > \ [\text{"John" to 23}] \ [\text{"Lee" to 16}] \)

The operation \text{number} takes a directory together with a user-name as input and returns
 the corresponding user-number. For example,

\((< 0 > \ [\text{"John" to 23}] \ [\text{"Ann" to 9}] \ [\text{"Lee" to 16}]) \text{number "Ann} \)
returns the user-number 9.

The operation is-in? takes a directory together with a user-name as input and returns true if the user-name is present in the directory, false otherwise. For example,

\[
(< 0 > ["John" to 23] ["Ann" to 9] ["Lee" to 16]) \text{ is-in? } "John"
\]

returns the value true.

The role of the accessor operations is to permit interrogation of the directory.

(a) Identify the accessors.

(b) Identify the non-atomic constructors.

(c) How many axioms are needed for the specification?

(d) Write down the syntactic component of the specification, that is the SPEC, USING, SORT and OPS components.

(e) The axioms are presented below. Complete the axioms by inserting the appropriate expressions in the places marked “??”.

\[\text{FORALL}\]
\[
\begin{align*}
& d : \text{dir} \\
& n1, n2 : \text{nat} \\
& \text{un}, \text{un1}, \text{un2} : \text{id}
\end{align*}
\]

AXIOMS for is-in?:

(1) \(< 0 > \text{ is-in? name } = \text{false} \)

(2) \((d [\text{un1 to n1}]) \text{ is-in? un2 } = \text{IF un1 == un2 THEN ??} \)

\[
\text{ELSE } d \text{ is-in? un2 ENDIF}
\]

AXIOMS for number:

(3) \(< 0 > \text{ number un } = 0 \)

(4) \((d [\text{un1 to n1}]) \text{ number un2 } = \text{IF un1 == un2 THEN ??} \)

\[
\text{ELSE ?? ENDIF}
\]

AXIOMS for remove:

(5) \(< 0 > \text{ remove un } = < 0 > \)
(6) (d [un to n1]) remove un2 = IF un1 == un2 THEN ??

ELSE (d remove un2) [un1 to n1]

ENDIF

Note that this specification will permit a user to be allocated more than one user-number, since the operation _ [_ to _] permits user-name, user-number pairs to be added to an existing directory regardless of whether the user has already been allocated a number.

The question now arises: how is the specification affected if we want the facility of updating a user-number. In other words, suppose the state of the directory is as given in (D1) above and it is now required to change John's user-number from 23 to 12. This idea corresponds to the familiar concept of map or function overwrite.

We have already noted that the existing operation _ [_ to _] does not incorporate this feature. However we can achieve this updating property by first removing the existing user-name, user-number pair from the directory (if one exists) and then adding the updated entry. We therefore make the existing operation _ [_ to _] hidden and introduce a new operation

_ [_ is _] which provides the required updating facility. The ONS component of the specification is then amended to:

_ [_ !to _] : dir id nat -> dir

_ [_ is _] : dir id nat -> dir

with corresponding amendments to the axioms, (that is all instances of _ [_ to _] are replaced by _ [_ !to _]). We need a seventh axiom which relates these two operations (just as we had an axiom which related !make and build for the ordered tree). The corresponding axiom is:

(7) d ([un is n1]) = (d remove un) [un !to n1]

The operation _ [_ is _] therefore provides the "proper" way of inserting user-name, user-number pairs into a directory. The operation _ [_ !to _] is flagged as hidden and so cannot be exported to any module which may subsequently want to use it.

(f) Suppose further that we wish to ensure that no two users can have the same user-number. If the result of attempting to add a new entry to the directory with an existing user-number is to be treated as an error, show how axiom (7) is amended to deal with this new constraint. (You will need to use a conditional on the right-hand side of the axiom).
Exercise 9.7

Attempting to access the root of an empty tree is an erroneous application. Introduce a
subsort of non-empty tree values and so recast the specifications Binary-tree and Ordered-
tree by redefining the domain and range sorts of the appropriate operations.

Exercise 9.8

In this example, we introduce supersorts which contain distinguished values (for example
"error messages") to handle exceptions.

For the stack, we introduce super-stack which is a supersort of stack to cater for applying pop to an empty stack. We also use super-nat, a supersort of nat to accommodate
the outcome of top applied to an empty stack.

In other words, super-stack is a subsort of stack and super-nat is a subsort of nat. The syntax of pop and top now become

\[
\text{pop : stack }\rightarrow\text{ super-stack}
\]

\[
\text{top : stack }\rightarrow\text{ super-nat}
\]

and the exceptional values (error messages) stack-error and nat-error (which corre-
spond to the original error values of Stack in Fig. 8.2) have signature

\[
\text{stack-error : }\rightarrow\text{ super-stack}
\]

\[
\text{nat-error : }\rightarrow\text{ super-nat}
\]

The operation push cannot produce exceptions when acting on any stack value from the
sort stack and we can overload push by defining a corresponding operation over the
supersort super-stack. The corresponding specification Stack-nat is given below in Fig.
9.8.

(a) Transform the specification Queue of Fig. 8.2 into an equivalent one which uses
error supersorts.

(b) Introduce appropriate supersorts into the directory example of Exercise 8.6 above
and produce the corresponding revised specification.
SPEC Stack-nat

USING Natural + Boolean

SORTS stack super-stack super-nat

SUBSORT stack < super-stack

SUBSORT nat < super-nat

OPS

 init : -> stack
 push : stack nat -> stack
 push : super-stack nat -> super-stack
 pop : stack -> super-stack
 top : stack -> super-nat
 is-empty? : stack -> bool
 stack-error : -> super-stack
 nat-error : -> super-nat

FORALL

 s : stack
 n : nat

AXIOMS:

(1) is-empty?(init) = true
(2) is-empty?(push(s,n)) = false
(3) pop(push(s,n)) = s
(4) top(push(s,n)) = n
(5) pop(init) = stack-error
(6) top(init) = nat-error

ENDSPEC

Figure 9.8: Algebraic specification of a stack using error supersorts
Bibliography

Chapter 10

Algebras and Abstract Data Types

10.1 Introduction

We now look at some of the background theory which lies at the heart of the algebraic approach to specification. The aim of this discussion is not to explore these theoretical aspects in great depth but to provide an overview of some of the important concepts upon which the approach is based.

Some of the ideas introduced here are not always immediately accessible and sometimes present difficulties when first encountered. If readers do find problems with some of the material in this chapter they can proceed, without penalty, to the next chapter which looks at building larger specifications and develops a number of small case studies. Study of these examples of algebraic specifications and how they are constructed should provide further insight into the algebraic approach and serve to reinforce the fundamental concepts discussed here. The reader can subsequently return to this chapter and gain a better understanding of these more formal ideas.

In this chapter we explain what is meant by an algebra and discuss the role of initial algebras for the specification of abstract data types. We look more formally at the notions of a signature and the relationship between a signature and an algebra. We shall see that algebras provide models of our specifications in the sense that they provide abstract implementations of a specification. These ideas are developed and explained with the aid of a number of examples.

We discuss the idea of structure-preserving transformations between algebras (so called homomorphisms) and the implications for the specification of data types. With no axioms, the class of algebras which interprets a given signature is very broad, often too broad to be of use for specifying the required behaviour of an abstract data type. Extending a signature with axioms allows specifications to be “tightened” in the sense that the specification can be tailored to capture the required properties of an abstract data type. A signature together with a set of axioms which relate terms constructed from the signature constitutes a presentation. Use of the axioms together with the inference rules of equational logic allows equivalences between terms (theorems) to be established.
and the resulting formal system is known as a \emph{theory presentation}. We consider algebras which provide models of theory presentations and at one model in particular, the \emph{quotient term algebra}. This algebra, whose existence is guaranteed for a given theory presentation, provides a unique semantics for that presentation. The importance of this algebra lies in the fact that it contains exactly what the specification requires and nothing more. These concepts will be explained in this chapter.

We look also at the implications of treating the axioms of an algebraic specification as a set of rewrite rules and explore further the reduction and evaluation of terms. The chapter concludes with a summary of the principal results.

We should emphasise that the aim is not to provide an in-depth account of this particular aspect of the algebraic approach, but to furnish the reader with an intuitive idea of the principles involved.

\section{Algebras}

\emph{Algebras} or \emph{algebraic systems} have long been a fertile area of study in mathematics and their relevance in relation to the theory of abstract data types was first pointed out in the mid 1970's by [Zilles 74]. Basically, an algebra consists of a set of values (the \emph{carrier set}) together with a collection of operations (functions) with domain and range values defined over the carrier set. If we pause for a moment and examine this definition, we realise that it also provides an informal description of an abstract data type.

It is therefore hardly surprising that algebras play a fundamental role in the theory of abstract data types. The importance of algebras lies in the fact that they provide mathematical models of specifications. Different types of algebraic models can be chosen for the underlying mathematical framework although we will concentrate on the so-called \emph{initial algebra} approach in which \emph{initial} models are used. To start, let us explore what is meant by an \emph{algebra}.

\subsection{Homogeneous or Single-sorted Algebras}

A \emph{homogeneous} (or \emph{single-sorted}) algebra \mathcal{A} is

$$\mathcal{A} = [A, \Omega]$$

where

- A is a non-empty set which contains values of the type and is known as the \emph{carrier set}
- Ω is a set of operations defined over the carrier set which may include \emph{nullary} operations (constants)

and the square brackets simply signify that an algebra consists of a pair of items, namely a set of values and a collection of operations. These homogeneous algebras describe small "self-contained" data types like the natural numbers or Boolean values. As an
example, an algebra, \mathcal{A}_{Nat}, describing the data type Natural with the familiar operations of addition (+) and multiplication (\times) is $\mathcal{A}_{\text{Nat}} = [\mathbb{N}, \{0, +, \times\}]$ where $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. (Note that we have included the value “0” (zero) as a nullary operation). Addition and multiplication are both binary operations which take two natural numbers and return a natural number as a result.

10.2.2 Heterogeneous or Many–sorted Algebras

The definition above is readily extended to heterogeneous or many–sorted algebras. In this case, $\mathcal{A} = \{A_i\}$ is a family of non-empty carrier sets A_i. Such algebras describe more interesting abstract data types such as stacks and queues. For example, the structure of the algebra describing stacks of natural numbers consists of the set of stack values, the set of natural numbers, the set of boolean values and the operations which manipulate these values. The operations of a heterogeneous algebra have domain and range values drawn from the sets of carriers A_i.

10.2.3 Models

The fundamental importance of algebras is that they provide models of algebraic specifications. As we shall see, a given specification has many algebras as a model so we therefore need to examine how such algebras might be related and whether there is one particular algebra (or algebras) which provides a “standard” representational model in the sense that it (or they) capture the essential properties of the whole class of models.

It is very important to realise that the term “model” in this context is very different from its meaning in VDM. In VDM, a specification is based upon creating a system model using a collection of operations defined by pre- and post- conditions together with a collection of data structures which are built up from well defined simple types (such as sets and composites) and a particular data structure (the system state) which the operations can access. Hence the system model in VDM is essentially an implementation based on discrete mathematical primitives. The operations are then defined individually in terms of their effect upon the system state.

With the algebraic approach, the behaviour of the operations is always described in terms of how two or more of them interact - they are never defined individually. The underlying “structure” associated with an algebraic specification is an algebra. Such an algebra is a model or interpretation of the specification and is defined without reference to any “better described” or ‘more concrete” entities. We will return to this point later in section 10.9.4.

10.3 Signatures and Heterogeneous Algebras

We need to stand back for a moment and formalise some of the ideas and concepts that have been used to date in our study of algebraic specifications. To start, we recall some basic definitions from our earlier discussion.
Signature: A signature, Σ, is a set of sorts together with a finite set of formal function symbols. Each function symbol has an associated *arity* which embodies the number of domain arguments and their sorts together with a range sort which represents the sort of the result.

The signature thus defines the syntax of operations using functions defined over the sorts and from which *terms* (or *expressions*) can be constructed that denote specific values. With reference to our specifications, Σ corresponds to the information contained in the SORTS and OPS components of a specification.

Suppose we have a many-sorted signature Σ and a heterogeneous algebra \mathcal{A}. The algebra \mathcal{A} is said to be a *model* of the signature if

- \mathcal{A} possesses a set of values (a carrier set) for each sort of Σ
- \mathcal{A} has an operation for each operation symbol of Σ whose domain and range sets correspond exactly with those imposed by the pattern given in the signature

The signature thus lays out a pattern or template which must be conformed to by any algebra which is to be a model of the signature (and therefore of the specification). Hence an algebra, \mathcal{A}, is a model of a signature, Σ, if we can “assign” the sort identifiers and operation symbols of Σ to corresponding carrier sets and operation names respectively in \mathcal{A}. We then say that \mathcal{A} is a model of Σ with this *interpretation* or *denotation*.

An analogy with programming in a language such as Modula-2 or Ada might be helpful here. In this context, we can think of a *signature* as a Modula-2 DEFINITION MODULE (or Ada package specification), which defines an interface and describes the syntax of an abstract data type. Any *algebra* which is a model of that signature then corresponds to an *implementation* of that abstract data type in which the carrier set of the algebra contains the values of the abstract data type.

Such algebras which are models of a signature, Σ, are commonly referred to as Σ-algebras. Let us examine these ideas with some examples.

10.4 Interpretations of a Signature

What should be realised at the outset is that there is *not* a one-to-one correspondence between signatures and algebras. One signature can denote (can be interpreted by) many algebras. Consider, for example, the signature of Fig. 10.1. An algebra which interprets this signature and which provides a simple model of the natural numbers, is

$$\mathcal{A}_{Nat} = [\mathbb{N}, \{0, \text{Succ}\}]$$

where the carrier $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\text{Succ} : \mathbb{N} \to \mathbb{N}$ is a unary operation defined by $\text{Succ}(n) = n + 1$ with $n \in \mathbb{N}$. This algebra represents the “familiar” (in the sense of the expected) interpretation of the function symbols in Σ over the natural numbers with Succ as the *successor* operation “+1”. For this signature, we have used the set \mathbb{N} as our
SORT nat

OPS

zero : -> nat

succ : nat -> nat

Figure 10.1: A signature for the natural numbers

interpretation of the sort nat, interpreted succ as Succ and used the denotation (that is correspondence)

\{ zero \rightarrow 0, \text{succ}(\text{zero}) \rightarrow 1, \text{succ}(\text{succ}(\text{zero})) \rightarrow 2, \ldots \}

so that every syntactically legal term of the signature is given as its interpretation a member of the set \{0,1,2,\ldots\}.

Another model of the signature is the algebra

\[\mathcal{A}_{\text{NatEven}} = [\mathbb{N}_{\text{Even}}, \{0, \text{Succ}_{\text{Ev}}\}] \]

where the carrier \(\mathbb{N}_{\text{Even}} = \{0, 2, 4, \ldots\} \) is the set of even natural numbers and \(\text{Succ}_{\text{Ev}} : \mathbb{N}_{\text{Even}} \rightarrow \mathbb{N}_{\text{Even}} \) is defined by \(\text{Succ}_{\text{Ev}}(n) = n + 2 \). In this case, \(\mathbb{N}_{\text{Even}} \) interprets the sort nat, the function \(\text{Succ}_{\text{Ev}} \) has been assigned to the symbol succ and we have used the denotation

\[\{ \text{zero} \rightarrow 0, \text{succ}(\text{zero}) \rightarrow 2, \text{succ}(\text{succ}(\text{zero})) \rightarrow 4, \ldots \} \]

One final example worth noting is that the signature of Fig. 10.1 also has as a model the algebra \(\mathcal{A}_1 \) where \(\mathcal{A}_1 = [\{e\}, \{e, \text{Id}_{e}\}] \) which consists of a carrier set with a single value \(e \) and the identity function \(\text{Id}_{e} \) which maps the element \(e \) onto itself, that is \(\text{Id}_{e}(e) = e \).

In this example, nat \(\rightarrow \{e\} \), succ \(\rightarrow \text{Id}_{e} \) and

\[\{ \text{zero} \rightarrow e, \text{succ}(\text{zero}) \rightarrow e, \text{succ}(\text{succ}(\text{zero})) \rightarrow e, \ldots \} \]

so that \(\mathcal{A}_1 \) provides yet another model of the signature of Fig. 10.1.

10.5 Term Algebra

One model, which mathematicians tend to ignore, is that in which the values of the carrier set are the terms themselves constructed from the function symbols (operations) in the signature \(\Sigma \). Such a model always exists and this interpretation is called the term algebra or term structure. Hence, for the signature of Fig. 10.1, one model is given by the term algebra

\[\mathcal{A}_{\text{NatTerm}} = \{[\text{zero}, \text{succ}(\text{zero}), \text{succ}(\text{succ}(\text{zero})), \ldots] \ , \ \{\text{zero}, \text{succ}\} \]
For the term algebra, each member of the carrier set is denoted by a variable-free or ground term. All the ground terms make up the "language" generated by the signature, in much the same way as BNF (Backus Naur Form - see chapter 1).

The term algebra is based upon the signature Σ of a specification and the carrier set corresponding to each sort consists of all the syntactically legal terms (with results of that sort) which can be constructed using Σ. In the case of the specification Stack, for example, the carrier set corresponding to the sort stack will contain not only terms involving the atomic constructors init and push, but also terms involving pop. The carrier set of the term algebra will therefore include terms such as

$$\text{pop}(\text{push}(\text{init}, 2)) \text{ and } \text{push}(\text{init}, \text{top}(\text{push}(\text{init}, 3)))$$

The important property of a term algebra is that it provides a symbolic representation of a specification which can be manipulated and treated as a model in its own right.

10.6 Transformations between Algebras

At this point, the bewildering number of different models of a single given signature leads us to wonder

- is there is some kind of "equivalence" or "resemblance" between the members of the class (family) of algebras which are models of a given signature?
- is there one member (or group of members) of this class which somehow captures the intrinsic properties of that entire class?

Before we can address these issues, we need to examine how an algebra can be transformed into another using a mapping between the carrier sets of the algebras. In the following discussion, we will confine ourselves to homogeneous algebras. The ideas developed here extend quite naturally to heterogeneous algebras but the added complexity of notation needed would only serve to obscure the fundamental concepts.

Two algebras $\mathcal{A} = [A, \Omega_A]$ and $\mathcal{B} = [B, \Omega_B]$ that are denoted by a common signature can certainly said to be similar in the sense that they will have the same number of operations of matching arities which allows the sets of operations Ω_A and Ω_B to be put into a one-to-one correspondence. This is a weak form of equivalence and is based purely on a syntactic classification. Nothing is stated about any connection between the semantic properties of the algebras (as prescribed by any equations satisfied by the operations) which defines how the values of the carrier sets A and B are related. We might expect, for example, to be able to map one algebra onto another while preserving the inherent structure of the operations.

10.6.1 Homomorphism

A stronger form of relationship (than equivalence) between algebras which does assert such a structure preserving property is homomorphism. Suppose two algebras \mathcal{A} and \mathcal{B}
as defined above are denoted by the same signature. The operations \(\omega_{A_k} \in \Omega_A \) from algebra \(A \) and \(\omega_{B_k} \in \Omega_B \) from algebra \(B \) of arity \(k \) can therefore be put into a one-to-one correspondence as noted above.

Consider a mapping \(h : A \to B \) between the carrier sets \(A \) and \(B \). Then \(h \) is a homomorphism from algebra \(A \) to algebra \(B \) if for every operation \(\omega_A \in \Omega_A \) of arity \(k \) with corresponding operation \(\omega_B \in \Omega_B \)

\[
h(\omega_A(a_1, a_2, \ldots, a_k)) = \omega_B(h(a_1), h(a_2), \ldots, h(a_k))
\]

(10.1)

where \(a_i \in A \) and \(1 \leq i \leq k \). To be a homomorphism, this result must hold for all operations of every arity.

This rather formidable equation states the following. The outcome of applying an operation \(\omega_A \) from \(A \) to values of the carrier of \(A \) and then finding the result when the mapping \(h \) is applied is the same as finding the transform of the values of \(A \) using \(h \) first and then applying the corresponding operation \(\omega_B \) of \(B \).

(Note that the existence of a homomorphism from \(A \) to \(B \) does not imply that a homomorphism exists from \(B \) to \(A \) and that although, by convention, we talk about a homomorphism \(h \) from one algebra \(A \) to another algebra \(B \), and write \(h : A \to B \), the mapping \(h \) is strictly a mapping between the carrier sets. Also \(h : A \to B \) is only well defined if the operations \(\omega_A \in \Omega_A \) and \(\omega_B \in \Omega_B \) are in one-to-one correspondence).

We can get a feel for the nature of homomorphisms and the meaning of equation (10.1) by looking at one particular homomorphism that has been used over the years to ease the effort involved in multiplying real numbers.

Consider the (homogeneous) algebras \(A \) and \(B \)

\[
A = [\mathbb{R}^+, \{\times\}] \quad ; \quad B = [\mathbb{R}, \{+\}]
\]

where \(\mathbb{R} \) is the set of real numbers, \(\mathbb{R}^+ \) is the set of positive real numbers and \(\times \) and \(+ \) denote the familiar arithmetic operations of multiplication and addition respectively.

The mapping \(h : \mathbb{R}^+ \to \mathbb{R} \) given by \(h(x) = \log(x) \) where \(x \in \mathbb{R}^+ \) is a homomorphism between \(A \) and \(B \) and we can formally prove this result by demonstrating that (10.1) holds. To start, we note that the two operations \(\times \) and \(+ \) have arity 2 so the arity constraint of (10.1) is satisfied. Furthermore, since each algebra has only the one operation, the correspondence between the operations of \(A \) and \(B \) is immediate and we can therefore take \(\omega_A \) as \(\times \) and \(\omega_B \) as \(+ \) respectively.

Using the familiar infix form for the operations \(\times \) and \(+ \), the left-hand side of (10.1) is \(h(a_1 \times a_2) \), that is

\[
\log(a_1 \times a_2)
\]

where \(a_1, a_2 \in \mathbb{R}^+ \). The expression which corresponds to the right-hand side of (10.1) is

\[
\log(a_1) + \log(a_2)
\]

These two expressions are equal since \(\forall a_1, a_2 \in \mathbb{R}^+, \ \log(a_1 \times a_2) = \log(a_1) + \log(a_2) \). It follows that the function \(h : \mathbb{R}^+ \to \mathbb{R} \) given by \(h(x) = \log(x) \) is a homomorphism. This
result is illustrated in Fig. 10.2 which demonstrates that a mapping h is a homomorphism if, starting from the top-left corner of the diagram, you end up with the same result (bottom-right hand corner), irrespective of which “path” you choose. In other words, the elements of the algebra B can be generated either by first applying the operation \times to elements of A and then converting the result using h (dotted path) or by first converting elements of A using h and then applying the operation $+$ of B (dashed path).

This particular homomorphism has been used for many years and forms the basis of the application of logarithms to multiply two numbers. Prior to the early 1970’s, when cheap pocket calculators became available, the result of multiplying two numbers was evaluated by first finding their individual logarithm (usually to base 10) using tables or a slide rule, adding the two logarithms together and then inverting the resultant sum.

10.6.2 Isomorphism

Homomorphisms can be classified according to the type of mapping h between the algebras. A homomorphism is an isomorphism if $h : A \rightarrow B$ is bijective. In other words, the elements of A and B can be put into one-to-one correspondence. This means that not only every value in B is mapped to, but there is also an inverse function which will map each value in B to a value in A. If two Σ-algebras, denoted by the same signature Σ are isomorphic, they are “equivalent” in all respects apart from the name of their sets and operations. Any statement expressed in terms of the function symbols of Σ which is true in A will also be true of B and vice-versa. Although the algebras may appear quite different in that the elements of the carriers are different, structurally the algebras are identical.

If an isomorphism exists between two algebras, those algebras possess the strongest type of similarity and are equivalent in all respects apart from the the symbols which name the elements of their respective carrier sets. The concept of an isomorphism between algebras is a fundamental one in relation to the specification of abstract data types because it expresses formally the independence of representation inherently necessary for values of abstract data types.
10.6.3 Some Examples and a Counter Example

These ideas are not readily accessible at first so we now present some examples which should help to clarify them.

Example 1

Consider the two algebras $A_{Nat} = [\{\mathbb{N}, \{0, Succ\}\}$ and $A_{NatEven} = [\{\mathbb{N}_{Even}, \{0, SuccEven\}\}$ introduced in section 10.4. The mapping $h : \mathbb{N} \rightarrow \mathbb{N}_{Even}$ from the natural numbers to the even natural numbers defined by $h(n) = 2n$ for every $n \in \mathbb{N}$ is a homomorphism.

To show that h is a homomorphism, we simply need to demonstrate that (10.1) holds for every operation in A_{Nat}, including all nullary operations (constant values). Observe that if the operation ω_A of A is a nullary operation with corresponding nullary operation ω_B in B, then (10.1) asserts that h will be a homomorphism if $h(\omega_A) = \omega_B$.

In this example, for the nullary operation 0 of A_{Nat}, the left-hand side of (10.1) becomes $h(0)$ which is equal to $2 \times 0 = 0$. Hence the left-hand side of (10.1) produces the result 0, which is equal to the corresponding nullary operation of $A_{NatEven}$. Hence (10.1) is satisfied for the nullary operations of the algebras.

For the operation $Succ$, the left-hand side of equation (10.1) is

$$h(Succ(n)) = h(n + 1) = 2(n + 1) = 2n + 2$$

and the corresponding right-hand side is

$$Succ_{Even}(h(n)) = Succ_{Even}(2n) = 2n + 2$$

The values are the same so that the function $h : \mathbb{N} \rightarrow \mathbb{N}_{Even}$ where $h(n) = 2n$ is a homomorphism and the algebras A_{Nat} and $A_{NatEven}$ are isomorphic. This mapping is bijective so that these algebras are also isomorphic. The function h is bijective because any given natural number n will map to the unique value $2n$ and conversely, any even natural number m will map to the corresponding unique natural number $\frac{m}{2}$. The inverse function $h_{inv} : \mathbb{N}_{Even} \rightarrow \mathbb{N}$ in this example is given by $h_{inv}(m) = \frac{m}{2}$.

Example 2

Consider the algebra A_{Nat} of Example 1 and the algebra $A_1 = [\{e\}, \{e, Ide\}]$ of section 10.4 whose carrier is the singleton set $\{e\}$. Consider the mapping $h : \mathbb{N} \rightarrow \{e\}$ defined by $h(n) = e$ for every $n \in \mathbb{N}$. This mapping is also a homomorphism from A_{Nat} to $A_1 = [\{e\}, \{e, Ide\}]$, since for the nullary operation e, the left-hand side of equation (10.1) is $h(0)$ which, using the definition of h, produces the value e and the right-hand of equation (10.1) reduces immediately to the corresponding nullary operation of A_1, which is e. Equation (10.1) is therefore true for the nullary operation 0 since both sides of the equation produce the same result e.

For the function $Succ$, the left-hand side of equation (10.1) is

$$h(Succ(n)) = h(n + 1) = e$$

and the corresponding right-hand side is

$$Ide(h(n)) = Ide(e) = e$$
so that again equation (10.1) holds. Hence \(h \) is a homomorphism. In this case, the mapping \(h : \mathbb{N} \to \{e\} \) is many-to-one and not bijective, so that the algebras are not isomorphic.

Example 3

Consider the set \(T \) of tuples (ordered pairs) \(< n, n > \) of natural numbers with \(n \in \mathbb{N} \) whose first and second slots are equal so that \(T = \{ < 0, 0 >, < 1, 1 >, < 2, 2 >, < 3, 3 >, \ldots \} \).

Then the algebra \(\mathcal{A}_{\text{Tuple}} = [T, \{ < 0, 0 >, \text{Succ}_T \}] \) where \(\text{Succ}_T : T \to T \) is defined by \(\text{Succ}_T(< n, n >) = < n + 1, n + 1 > \) is also an interpretation of the signature of Fig. 10.1. For this algebra, \(T \) interprets the sort \(\text{nat} \), \(\text{Succ}_T \) interprets \(\text{succ} \) and we have used the denotation

\[
\{ \text{zero} \to < 0, 0 >, \text{succ}(\text{zero}) \to < 1, 1 >, \text{succ}(\text{succ}(\text{zero})) \to < 2, 2 >, \\
\text{succ}(\text{succ}(\text{succ}(\text{zero}))) \to < 3, 3 >, \ldots \}
\]

Consider the mapping \(h : T \to \mathbb{N} \) defined by \(h(< n, n >) = n \) which maps a tuple \(< n, n > \) to its common slot value \(n \). We can show that \(h \) is a homomorphism from \(\mathcal{A}_{\text{Tuple}} \) to \(\mathcal{A}_{\text{Nat}} \) as follows.

Consider first the nullary operation \(< 0, 0 > \) of \(\mathcal{A}_{\text{Tuple}} \). For this operation, the left-hand side of (10.1) is \(h(< 0, 0 >) \) which results in the value 0. This in turn is equal to the value of the corresponding nullary operation 0 of \(\mathcal{A}_{\text{Nat}} \), so we have

\[
h(< 0, 0 >) = 0
\]

and equation (10.1) is therefore satisfied by the corresponding nullary operations of the two algebras.

For the operation \(\text{Succ}_T \), the left-hand side of equation (10.1) is

\[
h(\text{Succ}_T(< n, n >)) = h(< n + 1, n + 1 >) = n + 1
\]

while the corresponding right-hand side is

\[
\text{Succ}(h(< n, n >)) = \text{Succ}(n) = n + 1
\]

The two sides are equal, so that \(h \) is a homomorphism from \(\mathcal{A}_{\text{Tuple}} \) to \(\mathcal{A}_{\text{Nat}} \). This mapping is bijective so that the two algebras are isomorphic.

The discussion so far has centred on algebras which are models of a signature. Our specifications have also included a collection of axioms so we now need to extend the discussion and examine algebras as models of these “enlarged” signatures.

Exercise 10.1

Show that the mapping \(h' : T \to \mathbb{N} \) defined by \(h'(< n, n >) = 2n \) is not a homomorphism from \(\mathcal{A}_{\text{Tuple}} \) to \(\mathcal{A}_{\text{Nat}} \), and determine whether the mapping \(h'' : T \to \mathbb{N} \) defined by \(h''(< n, n >) = 0 \) is a homomorphism from \(\mathcal{A}_{\text{Tuple}} \) to \(\mathcal{A}_{\text{Nat}} \).
Exercise 10.2

Show that the algebras A_{Nat} and A_{Tuple} are isomorphic.

10.7 Axioms and Theory Presentations

Consider a signature Σ with ν function symbols (operations) and no axioms. The algebras denoted by such a signature with no axioms form a very broad class of algebras in the sense that the only restriction on these algebras is the existence of ν operations with the appropriate domain and range carriers. These algebras can be thought of as providing very general models—often too general for modelling abstract data types in the sense that no “restrictions” are placed on the properties of the operations. The fundamental importance of axioms in a specification is that they impose constraints to be satisfied by the values and operations in any interpretation (model). The inclusion of axioms allows us to tailor specifications to meet the behavioural requirements of our abstract data type.

Such specifications, which consist of a signature Σ, extended by a collection of axioms E, where the axioms relate terms constructed from the signature, are known as presentations. A presentation is therefore given by a tuple $< \Sigma, E >$. The set of all identities $t = t'$ which can be derived from the given set of axioms E using equational logic, where t and t' are terms constructed from Σ, is called the closure of E. The closure defines all the theorems provable within the presentation and so we can think of the closure as a theory. The presentation $< \Sigma, E >$ together with the closure of E then defines what is called a theory presentation or theory for short. The reader should be aware that some authors use the word “presentation” as a synonym for what we call a “theory presentation” although the context in which the word is used usually makes it clear as to which meaning is intended.

An example of a presentation is shown in Fig. 10.3 where we have appended the operation add to the signature of Fig. 10.1 together with two axioms satisfied by add. This example will be used to illustrate and help explain a number of important features of theory presentations and their models. Observe that the atomic constructors for Natural are zero and succ while add is a non-atomic constructor. (The reader may wonder if a third axiom $\text{add}(n, \text{zero}) = n$ is also required, but as we shall show in chapter 12, this result can be derived formally from the two given axioms of Natural using equational inference and structural induction).

We say that an algebra is denoted by a presentation if the algebra is denoted by the signature of that presentation and the variety over the presentation is the set (class) of all algebras denoted by the presentation which satisfy the axioms. An algebra which is denoted by a signature Σ is said to satisfy the axioms E of the presentation $< \Sigma, E >$ if, for each axiom, evaluation of each side of the axiom produces identical results for all possible assignments of values of the carrier set to the variable of the corresponding sort. We will expand upon these ideas shortly but first we need to look briefly at equational logic and its role in theory presentations.
SPEC Natural

SORT nat

OPS

 zero : nat -> nat
 succ : nat -> nat
 add : nat nat -> nat

FORALL

 m, n : nat

AXIOMS

(1) add(zero, n) = n

(2) add(succ(m), n) = succ(add(m, n))

ENDSPEC

Figure 10.3: Specification (Presentation) for natural numbers
10.7.1 Axioms and Equational Logic

For algebraic specifications each axiom is an equation of the form $L = R$ which relates two terms constructed from the signature. Each axiom states that the two terms L and R are to denote the same value. We can use the axioms together with the inference rules of equational logic to generate new theorems. For example, we can use the axioms of Stack to deduce the theorem

$$\text{pop(push(push(init, 3), 5)) = push(init, 3)}$$

Implicit as part of the semantics of the data type therefore is not only the axioms themselves, but all their consequences under equational logic and it is this particular logic system (also known as equational inference) which lies at the heart of the algebraic approach to specification. Equational logic makes use of axioms with universally quantified variables, with equality as the only predicate. The axioms may be unconditional ones of the form $L = R$ or conditional axioms predicated by a Boolean expression which determines the context in which the axiom holds. Conditional axioms take the form $L = R \iff b$ where b is a boolean expression. In fact, a conditional axiom can always be transformed to an unconditional one since $L = R \iff b$ is equivalent to

$$L = \begin{cases} R & \text{if } b \\ L & \text{if } \neg b \end{cases}$$

In the equational approach, we treat the axioms which relate operations as substitution rules, so that the substitution of a term by an equal term (using an axiom) into an expression permits the expression to be rewritten into an equivalent one.

Under equational inference, given a set of axioms E, two well-formed terms t_1 and t_2 denote the same value if and only if they can be proved equal from the axioms. (Well-formed in this context means that t_1 and t_2 are syntactically legal terms generated from the signature). In other words, if and only if the axiom $t_1 = t_2$ can be proved as a consequence of using the axioms. In more detail, an axiom $t_1 = t_2$ is provable from a set of axioms if either:

- $t_1 = t_2$ is a member of E (in other words, $t_1 = t_2$ is one of the stated axioms)

or

- $t_1 = t_2$ can be derived from E using a finite sequence of
 1. $t = t$ (reflexive property)
 2. if $u = t$ then $t = u$ (symmetric property)
 3. if $s = u$ and $u = t$ then $s = t$ (transitive property)
 4. if $x_1 = y_1$, $x_2 = y_2$, ..., $x_n = y_n$ and op is an operation with arity n (that is, it has n argument slots), then
 $$op(x_1, x_2, \ldots, x_n) = op(y_1, y_2, \ldots, y_n)$$
 5. if $s = t$ where s and t both contain the same universally quantified variables and well-formed terms are substituted for all or some of the variables resulting in corresponding terms s' and t', then $s = t$.
Unlike the model-based approach to specification in which explicit system models in the form of discrete mathematical structures are used to build an abstract mathematical model of the state of a system, an algebraic specification of an abstract data type defines the data type, its operations and their meaning without any knowledge of the representation. Algebraic specifications use only the underlying logical system (equational inference) to formally specify a system. These ideas are developed later in this chapter where we discuss the difference between VDM models and algebras as models of algebraic specifications.

Exercise 10.3

Given a set of axioms E and that $t = t_1$ and $t = t_2$ are equations provable from E, use the inference rules listed above to show that the equation $t_1 = t_2$ is provable from E. Use the above result together with the inference rules and the set of axioms of Stack to show that the equation

$$\text{push}(\text{pop}(\text{push}(\text{init}, n1)), n2) = \text{pop}(\text{push}(\text{push}(\text{init}, n2), n3))$$

where $n1, n2, n3 \in \text{nat}$ is provable from the axioms of Stack.

10.8 Algebras as Models of a Theory

We now explain more precisely what is meant when we say that an algebra is a model of a theory presentation.

Consider, for simplicity, a single-sorted theory presentation characterised by a sort S, signature Σ and a collection of m axioms $L_i = R_i$, $1 \leq i \leq m$. A homogeneous algebra $A = [A, \Omega]$ is a model of the theory presentation if

- A is denoted by the signature of the presentation
- all the axioms of the presentation are satisfied by A, that is to say for all axioms $L_i = R_i$ of the presentation, both terms (L_i and R_i) evaluate to the same value (denote the same object of the algebra) for all assignments of values in the carrier set A to the variables in S.

This result readily extends to heterogeneous algebras which provide models for many-sorted theory presentations.

As an illustration, consider the presentation Natural of Fig. 10.3. We will consider two possible models which are isomorphic to each other.

10.8.1 Model 1

One model, is provided by the algebra

$$A_{Nat} = \{0, 1, 2, \ldots\}, \{0, \text{Succ}, +\}$$
with the interpretation:

\[
\text{succ} : \text{nab} -\to \text{nab} \to \text{Succ} : \text{N} -\to \text{N} \text{ where } \text{Succ}(n) = n + 1
\]

\[
\text{add} : \text{nab nab} -\to \text{nab} \to + : \text{N}^2 -\to \text{N} \text{ where } + (m, n) = m + n
\]

so that + denotes the usual arithmetic addition operator, together with the denotation

\[
\{ \text{zero} \to 0, \text{succ} (\text{zero}) \to 1, \text{succ} (\text{succ} (\text{zero})) \to 2, \ldots, \text{add} (\text{zero}, \text{zero}) \to 0,
\]

\[
\text{add} (\text{succ} (\text{zero}), \text{zero}) \to 1, \text{add} (\text{succ} (\text{zero}), \text{succ} (\text{zero})) \to 2, \ldots \}
\]

To show that this algebra is indeed a model of our presentation, we must show that axioms (1) and (2) of the presentation are true with this interpretation.

With our interpretation, the natural number \(n \in \text{N} \) is denoted by \(n \) applications of the operation \(\text{succ} \) to \(\text{zero} \) and will be written \(\text{succ}^n (\text{zero}) \) as a convenient shorthand. Consider the left-hand side of axiom (1)

\[
\text{add} (\text{zero}, \text{succ}^n (\text{zero})) \to + (0, n) = 0 + n = n
\]

The right-hand side of axiom (1) is

\[
\text{succ}^n (\text{zero})
\]

which interprets to \(n \) also so that axiom (1) is satisfied by the algebra.

Consider now the left-hand side of axiom (2)

\[
\text{add} (\text{succ} (\text{succ}^m (\text{zero})), \text{succ}^n (\text{zero})) \to + ((m + 1), n) = (m + 1) + n = (m + n) + 1
\]

The right-hand side of axiom (2) is

\[
\text{succ} (\text{add} (\text{succ}^m (\text{zero}), \text{succ}^n (\text{zero}))) \to \text{Succ} (+ (m, n)) = \text{Succ} (m + n) = (m + n) + 1
\]

so that axiom (2) is also satisfied by the algebra. Since both axioms are satisfied by the interpretation, it follows that \(\mathcal{A}_{\text{Nat}} \) is a model of the presentation.

10.8.2 Model 2

Another model of the same presentation is given by the algebra \(\mathcal{A}_{\text{NatEven}} \) where

\[
\mathcal{A}_{\text{NatEven}} = \{ [0, 2, 4, \ldots], \{ 0, \text{Succ}, +_E \} \}
\]

where the carrier set is now the set of even natural numbers, \(\text{N}_{\text{Even}} \) and we use the denotation

\[
\text{succ} : \text{nab} -\to \text{nab} \to \text{Succ}_E : \text{N}_{\text{Even}} \to \text{N}_{\text{Even}} \text{ where } \text{Succ}_E (n) = n + 2
\]

\[
\text{add} : \text{nab nab} -\to \text{nab} \to +_E : \text{N}_{\text{Even}}^2 \to \text{N}_{\text{Even}} \text{ where } +_E (m, n) = m + n
\]

so that +\(_E \) is again the conventional arithmetic addition operator together with
\{ \text{zero} \rightarrow 0, \text{succ} (\text{zero}) \rightarrow 2, \text{succ} (\text{succ} (\text{zero})) \rightarrow 4, \ldots, \text{add} (\text{zero}, \text{zero}) \rightarrow 0, \}

\text{add} (\text{succ} (\text{zero}), \text{zero}) \rightarrow 2, \text{add} (\text{succ} (\text{zero}), \text{succ} (\text{zero})) \rightarrow 4, \ldots \}

With this interpretation, the even natural number \(2n\) is denoted by \(n\) consecutive applications of the operation \text{succ} to \text{zero} and will be written \(\text{succ}^n(\text{zero})\) for convenience. Consider the left-hand side of axiom (1)

\[\text{add} (\text{zero}, \text{succ}^n (\text{zero})) \rightarrow +_E (0, 2n) = 0 + 2n = 2n \]

The right-hand side of axiom (1) is

\[\text{succ}^n (\text{zero}) \]

which interprets to \(2n\) also so that axiom (1) is satisfied by the algebra.

Consider now the left-hand side of axiom (2)

\[\text{add} (\text{succ} (\text{succ}^n (\text{zero})), \text{succ}^n (\text{zero})) \rightarrow +_E (2(m + 1), 2n) = (2m + 2) + 2n = (2m + 2n) + 2 \]

The right-hand side of axiom (2) is

\[\text{succ} (\text{add} (\text{succ}^n (\text{zero}), \text{succ}^n (\text{zero}))) \rightarrow \text{Succ}_E (+_E (2m, 2n)) = \text{Succ}_E (2m + 2n) = (2m + 2n) + 2 \]

so that axiom (2) is also satisfied by the algebra. Since both axioms are satisfied by the interpretation, it follows that \(A_{\text{NatEven}}\) is also a model of the presentation (specification).

10.9 Initial Algebras

We can now return to the conjectures posed earlier concerning the class of algebras which are models of a given specification:

- how are the algebras which interpret a theory related?
- is there one particular member or (sub-class) of the class of algebras which captures the essential properties of that entire class?

It is important to remember that our specification provides a theory which describes the required properties and behaviour of a data type yet to be implemented. When an algebraic specification of an abstract data type is implemented, an appropriate representation
for each value of the data type is chosen from the various models of the theory, with each operation being interpreted by a “function” or algorithm over that chosen representation. The design of the data type entails determining which of the various models of the presentation is the most appropriate.

The connection or “family resemblance” between the various algebras which make up the class (family) of algebras that models a given specification is provided by a special subset of that class. These special algebras are known as initial algebras. An initial algebra has the fundamental property that a unique homomorphism exists between that initial algebra and each member of the class. This means that every algebra which belongs to the class of models can be reached by application of a unique mapping (transformation) from an initial algebra.\footnote{For completeness, and the mathematically curious, we append a formal definition of initiality. An algebra \(\mathcal{I} \) is initial in a category \(\mathcal{C} \) of algebras over a presentation if and only if \(\mathcal{I} \) is a member of \(\mathcal{C} \) and for every algebra \(\mathcal{A} \) which belongs to \(\mathcal{C} \), a unique homomorphism from \(\mathcal{I} \) to \(\mathcal{A} \) exists. (A category of algebras with respect to a given presentation is a set of algebras denoted by the presentation together with a number of homomorphisms between these algebras. For our purposes, the category \(\mathcal{C} \) is the variety over a presentation together with all possible homomorphisms between the algebras of the variety.)} Furthermore, it can be shown that all initial algebras (which interpret a theory) are isomorphic to each other and so are “indistinguishable”. This formal statement simply expresses the fact that there is more than way of implementing a given data type, all of which are valid with respect to the theory. We can therefore talk about a single initial algebra which is unique up to isomorphism.

Another way of looking at this result is to think of the initial algebra(s) as the hub or centre of a wheel with all the other algebras of the class that interpret a signature placed radially around the wheel’s circumference. Each of these perimeter algebras is connected to the hub by a single “spoke” which is the unique homomorphism from the “focal” initial algebra(s) to that perimeter algebra. Every algebra of the class can therefore be “reached” or “derived” from an initial algebra.

It is this observation which provides the answers to the two questions posed earlier and explains why the initial algebra is often used as the “standard” in the sense of being the “most representative” model of a theory presentation. This is the approach adopted in this text. One advantage of using initial models is that they do not have some of the undesirable properties which characterise many of the models. For example, models which have either junk or confusion (evocative terms!) are often discarded - properties not possessed by initial algebras. These ideas will be examined shortly with the aid of an illustrative example using a simple theory for Boolean values.

10.9.1 Initial Models - Junk and Confusion

For the specification of abstract data types, we usually focus upon initial algebras as models of the theory presentation. We now examine some of the (desirable) properties of such initial models. It can be proved that an algebra is initial if and only if it possesses the following properties

- no junk – the model should not have unnecessary elements. Models in which the carrier set has an element or elements which do not correspond to any term in the theory presentation are said to have “junk”. The property of having “no junk”
therefore asserts that all values of the carrier are denoted by terms which can be constructed from the signature, so that every element of the carrier can be named using the operation symbols of the signature.

- no confusion – terms should not be equal unless they are forced to be so by the axioms. Interpretations with “no confusion” have the property that two terms denote the same value if and only if they can be proved equal from the given axioms (using equational inference). The only equalities between values of the carrier are those which can be deduced from the axioms of the presentation.

We need to emphasise one crucially important point that the reader needs to grasp. The property of initiality is a characteristic of the interpretation of a theory and not a property of the theory itself. Theory presentations can be given various forms of semantics: in our case we concentrate on their initial semantics.

10.9.2 Models of a Boolean Theory

The idea of algebras as models of a theory and the concept of an initial model which has the no junk, no confusion property are not always immediately accessible at first, so it will be worth exploring these features with the aid of an example. Our starting point will be a simple theory of Boolean values. We can specify a small Boolean theory Boolean with the two nullary operations true and false together with the unary operation not and the binary operation and. The complete specification is given in Fig. 10.4.

This theory has many algebras as its models and we will look at three different models, Model A, Model B, Model C and discuss their properties. The subscripts A, B, C are used to differentiate the three cases.

Algebra A

In the first model, suppose the carrier set contains the single value 2, that is \(A = \{ 2 \} \) and \(\Omega = \{ 2, \text{not}_A, \text{and}_A \} \). This means that every term of the data type Boolean must be given as its interpretation a member of the set \(\{ 2 \} \). We therefore use the denotation

\[
\{ \text{true} \to 2 , \text{false} \to 2 \}
\]

together with

\[
\text{not}_A(2) = 2 ; \quad \text{and}_A(2, 2) = 2
\]

Firstly, consider the left- and right-hand sides of axiom (1). We will use the symbol \(\rightarrow \) to signify “is denoted by”, (as in section 10.4) so for the left-hand side of axiom (1)

\[
\text{not}(\text{true}) \rightarrow \text{not}_A(2)
\]

while for the right-hand side

\[
\text{false} \rightarrow 2
\]
SPEC Boolean

SORT bool

OPS

true : -> bool

false : -> bool

not : bool -> bool

and : bool bool -> bool

FORALL

b : bool

AXIOMS:

(1) not(true) = false

(2) not(false) = true

(3) and(true,b) = b

(4) and(b,true) = b

(5) and(false,b) = false

(6) and(b,false) = false

ENDSPEC

Figure 10.4: Algebraic specification of a Boolean data type
and $not_A(2) = 2$ so that axiom (1) is satisfied in this model.

Consider now the left-hand side of axiom (2)

$$\text{not(false)} \rightarrow not_A(2)$$

while for the right-hand side

$$\text{true} \rightarrow 2$$

and $not_A(2) = 2$ so that axiom (2) is also satisfied in this model.

In the case of axiom (3), if b has the value true, we have for the left-hand side of that axiom

$$\text{and(true, true)} \rightarrow and_A(2, 2)$$

while for the right-hand side of axiom (3) when b has the value true

$$\text{true} \rightarrow 2$$

and from our model, $and_A(2, 2) = 2$ so that axiom (3) is satisfied. Turning to the case when b has the value false, we have for the left-hand side of axiom (3)

$$\text{and(true, false)} \rightarrow and_A(2, 2)$$

while for the right-hand side of axiom (3) when b has the value false

$$\text{false} \rightarrow 2$$

and from our model, $and_A(2, 2) = 2$ so that axiom (3) is again satisfied.

We can repeat this process for the remaining three axioms. It can be seen immediately that the left-hand sides of axioms (4), (5) and (6) will all be denoted by $and_A(2, 2)$ while all the right-hand sides will be denoted by 2. Since $and_A(2, 2) = 2$ in our model, it follows that axioms (4), (5) and (6) are also satisfied. All the axioms are therefore satisfied by this model.

Hence this algebra

$$A = \{2\}, \{2, not_A, and_A\}$$

is a model of Boolean. In this model, every term in the theory maps onto the one value 2. The boolean values true and false are therefore indistinguishable, so that clearly this model would be of no practical use in computer science! Nevertheless it is a valid model of the theory Boolean.
Since the carrier set contains only the one value 2, the *interpretation* is enforcing the equality \(\text{true} = \text{false} \), which does not follow from the given axioms. This model has the “confusion” property and is therefore not an initial one.

Algebra B

This model will be familiar to all computer scientists where

\[
A = \{0, 1\}, \quad \Omega = \{0, 1, \text{not}_B, \text{and}_B\}
\]

In this case we use the set \(\{0, 1\} \) to model the sort `bool` using the denotation

\[
\{ \text{false} \to 0, \quad \text{true} \to 1 \}
\]

together with

\[
\text{not}_B(0) = 1 \quad ; \quad \text{not}_B(1) = 0 \\
\text{and}_B(0, 0) = 0 \quad ; \quad \text{and}_B(0, 1) = 0 \\
\text{and}_B(1, 0) = 0 \quad ; \quad \text{and}_B(1, 1) = 1
\]

Consider firstly the left- and right-hand sides of axiom (1). As before, using the symbol \(\to \) to signify “ is denoted by ”, we have for the left-hand side

\[
\text{not}(\text{true}) \to \text{not}_B(1)
\]

while for the right-hand side

\[
\text{false} \to 0
\]

and \(\text{not}_B(1) = 0 \) so that axiom (1) is satisfied in this model.

Consider now the left-hand side of axiom (2)

\[
\text{not}(\text{false}) \to \text{not}_B(0)
\]

while for the right-hand side

\[
\text{true} \to 1
\]

and \(\text{not}_B(0) = 1 \) so that axiom (2) is satisfied in this model.

For the remaining axioms, we need to study each of the four axioms for all values of the boolean variable \(\mathfrak{b} \). On the face of it this appears to involve eight further analyses. However only four further cases need be considered since there is some duplication. In particular, axioms (3) and (4) are identical when \(\mathfrak{b} \) has the value \(\text{true} \) as are axioms (3) and (6) when \(\mathfrak{b} \) has the value \(\text{false} \) in (3) and the value \(\text{true} \) in (6). Likewise, axioms (5) and (6) are identical when \(\mathfrak{b} \) has the value \(\text{false} \) as are (4) and (5) when \(\mathfrak{b} \) has the value \(\text{false} \) in (4) and \(\text{true} \) in (5).

For axiom (3), we therefore need only consider the case when \(\mathfrak{b} \) has the value \(\text{true} \). For the left-hand side
\[
\text{and(true, true)} \rightarrow \text{and}_B(1, 1)
\]

while for the right-hand side

\[
\text{true} \rightarrow 1
\]

and \(\text{and}_B(1, 1) = 1\), so axiom (3) is satisfied in this model.

For axiom (4), we consider the situation when \(b\) has the value \text{false} in which case for the left-hand side, we have

\[
\text{and(false, true)} \rightarrow \text{and}_B(0, 1)
\]

while for the right-hand side

\[
\text{false} \rightarrow 0
\]

and \(\text{and}_B(0, 1) = 0\), so axiom (4) is satisfied in this model.

Coming on to axiom (5), we need only analyse the case when \(b\) has the value \text{false} so for the left-hand side

\[
\text{and(false, false)} \rightarrow \text{and}_B(0, 0)
\]

while for the right-hand side

\[
\text{false} \rightarrow 0
\]

and \(\text{and}_B(0, 0) = 0\), so axiom (5) is also satisfied in this model.

Finally, with axiom (6), when \(b\) has the value \text{true}, we have for the left-hand side

\[
\text{and(true, false)} \rightarrow \text{and}_B(1, 0)
\]

while for the corresponding right-hand side

\[
\text{false} \rightarrow 0
\]

and \(\text{and}_B(1, 0) = 0\), so axiom (6) is satisfied in this model.

All the axioms are therefore satisfied by this model.

Hence this algebra is also a model of Boolean and is likely to have been the one intended! This model has the required “no junk, no confusion” property and so is an example of an initial model.
Algebra C

For the last model, we take the algebra $A = [A, \Omega]$ where the carrier set A consists of the three values 0,1,2 so that

$$A = \{0, 1, 2\}$$

and $\Omega = \{0, 1, not_C, and_C\}$ In this case we use the set $\{0, 1, 2\}$ to model the sort bool using the denotation

$$\{\text{false} \rightarrow 0, \quad \text{true} \rightarrow 1\}$$

together with

$$not_C(0) = 1 ; \quad not_C(1) = 0 ; \quad not_C(2) = 2$$

$$and_C(0, 0) = 0 ; \quad and_C(0, 1) = 0 ; \quad and_C(0, 2) = 0$$

$$and_C(1, 0) = 0 ; \quad and_C(1, 1) = 1 ; \quad and_C(1, 2) = 2$$

$$and_C(2, 0) = 0 ; \quad and_C(2, 1) = 2 ; \quad and_C(2, 2) = 2$$

This algebra can also be shown to be a model of Boolean. However, it has the superfluous element 2 which does not correspond to any term in the signature and so does not contradict any axiom of the theory. This extra value is known as “junk” and the model is again not initial.

Exercise 10.4

Show that Algebra C is a model of Boolean. Show also that the axioms of the theory are not violated if either of the following interpretations are used

$$and_C(2, 2) = 0 \quad \text{or} \quad and_C(2, 2) = 1$$

10.9.3 The Importance of Initial Models

We have seen that there are many models of an equational theory presentation, some of which have undesirable properties. There are benefits in confining our attention to initial models. The initial algebra approach has proved to be an appropriate framework for defining specification correctness criteria such as consistency and sufficient completeness. With the initial algebra approach, the unique initial algebra (up to isomorphism) is used as the “standard” model of a set of axioms and many (but not all) algebraic specification languages have an initial algebra semantics.

The reason why initial models are very important and hence widely used in algebraic specification is worth emphasising. The fundamental property possessed by initial models is that they provide precisely what the specification requires and nothing extra. They have no superfluous elements (no junk) and do not enforce two values of the data type to be equal which were meant to be distinct (no confusion). They therefore provide faithful interpretations of a specification which explains why they are often used as the standard representational model of a specification. This is the principal reason why we have concentrated on the initial approach in this text.
Indeed, for executable algebraic specification languages, the semantics must be initial (an issue we take up later in chapter 13). A further illustration of models with junk and confusion is given at the end of this chapter in the Additional Problems (Problem 10.7).

Exercise 10.5

Show that the algebra $A = [A, \Omega]$ where $A = \{0, 1\}$, $\Omega = \{0, 1, \text{not, and}\}$ with $\text{false} \rightarrow 0$; $\text{true} \rightarrow 1$; $\text{not}(0) = 1$; $\text{not}(1) = 0$; $\text{and}(1, 0) = 0$; $\text{and}(1, 1) = 1$; $\text{and}(0, 1) = 0$; $\text{and}(0, 0) = 1$ is not a model of Boolean.

10.9.4 Models in VDM

Before looking at how an initial algebra can be derived for a given specification, it is important that we understand the fundamental difference between algebras as models of an algebraic specification and abstract models in the context of VDM. In VDM discrete mathematical structures such as sets, sequences and mappings are used as models for an abstract data type which essentially provide abstract implementations of that data type. The meanings of the operations of an abstract data type are then defined, in isolation, in terms of their effect on the mathematical model. The semantics of the abstract data type is therefore defined in terms of another “better understood” object, which is an implementation, albeit a very abstract one. This is not altogether satisfactory. One problem with using an explicit mathematical model is that although the model may provide all the desired properties of an abstract data type, it may also have additional properties which are not appropriate to or may even be undesirable for that abstract data type.

You may think similar comments apply to algebraic specifications where the underlying object is now the initial algebra. However, this is not the case: algebraic specifications do not specify the semantics of an abstract data type in terms of some “better understood” and slightly more concrete object. The semantics of the operations of an abstract data type are defined not in terms of some other object but in terms of the set of operations themselves. Their semantics is expressed as a collection of axioms, each of which shows how two or more operations are related.

Algebraic specifications are theory presentations which use only the underlying logical system (equational inference) to specify an abstract data type. No general mathematical models are introduced to provide an explicit abstract implementation. The algebras are simply interpretations which satisfy the theory and contain precisely what the corresponding specification requires and nothing more.

10.10 Deriving an Initial Algebra

The importance of initial algebra semantics in the specification of abstract data types cannot be understated. The initial algebra for a specification captures the essential properties of a specification in the sense that it contains exactly what the specification requires and nothing more. It is the “best” model for a given specification because it contains no superfluous terms (no junk) and does not make two terms indistinguishable
which were intended to be distinct (no confusion). The presence of junk or confusion in a model excludes it from consideration as a faithful interpretation of the corresponding specification.

Although we have discussed at length the important properties possessed by initial algebras and the key role that initial algebras play in the specification of abstract data types, we have not yet addressed how a suitable initial algebra can be derived for a given specification. The answer lies in the quotient term algebra.

10.10.1 Quotient Term Algebra

Under equational inference, with no axioms, each term of a theory presentation would denote a distinct value for any initial interpretation. The axioms identify those terms which are to have equivalent meanings in the intended semantic domain (model), that is those which are to denote the same value. Pairs of terms not equivalent under the axioms are treated as denoting distinct values. Identifying equivalent terms in the term algebra generates what is called the quotient term algebra or quotient term structure, and this aspect is worth developing in a little more detail.

The axioms of a specification define a collection of equality relations between the variable-free (ground) terms for each sort. These equality relations are equivalence relations in that they are reflexive, symmetric and transitive. For example, for the specification Stack of Fig. 8.2, the following ground terms are all equal

\[
\text{init, pop(push(init,3)), pop(pop(push(push(init,1),2)))}
\]

\[
\text{pop(push(init,top(push(init,1))))}
\]

and this property stems directly from the inference rules of equational logic. If we use the notation \(< t >\) to denote the set of all terms equivalent to a given term \(t\), the above terms are members of the equivalence class \(< \text{init} >\) where we have selected the “simplest” term \(\text{init}\) (simplest in the sense of being the shortest string) to represent the class, although any member of the equivalence class could have been chosen.

For each sort, the axioms (equality relations) therefore partition the ground terms of the term algebra into a number of equivalence classes. If we imagine partitioning all the ground terms of the term algebra into the appropriate collection of equivalence classes, the resulting algebra whose carrier set(s) consist of this collection of equivalence classes is called the quotient term algebra. For the quotient term algebra, each member of the carrier(s) is an equivalence class of terms and we are at liberty to choose any member of an equivalence class to represent that class. An important property of the quotient term algebra is that this algebra is initial.

A distinct advantage of using term algebras is that term rewriting can be performed directly upon the theory presentation itself.
10.10.2 Canonical Term Algebra and Reduced Expressions

While the basic idea of generating all the terms of the term algebra and then placing each term in an appropriate equivalence class may seem attractive, the approach does not provide a practical method for deriving an initial algebra. However, the use of canonical terms, also referred to as canonical forms, provides us with a pragmatic solution to this problem. It is often possible to identify a subset of the terms such that each term in the subset is a member of a different equivalence class and every term of the term algebra is equivalent to exactly one member of this subset. The individual terms which comprise such a subset are called canonical terms and algebras whose carrier sets consist of such a collection of canonical terms are referred to as canonical term algebras. It is not hard to see that the resulting algebra whose carrier set consists of these canonical terms will be isomorphic to the quotient term algebra and hence will itself be initial.

Moreover, if an appropriate set of atomic constructors can be identified, it can be shown that each reduced expression (that is any ground term consisting of a composition of atomic constructors) is also a canonical term. This result is proved in chapter 12. Canonical terms can therefore be systematically generated using the atomic constructors and a canonical term algebra derived. Identification of a set of atomic constructors for an abstract data type therefore provides a valuable link between the (initial) canonical term algebra and our intuitive conception of the properties of that abstract data type.

In the case of the presentation of Fig. 10.3, the initial algebra $A_{\text{CanonicalNat}}$ of canonical terms can be derived using the corresponding atomic constructors zero and succ

$$
A_{\text{CanonicalNat}} = [A_{\text{CanonicalNat}}, \{\text{zero}, \text{succ}, \text{add}\}]
$$

where the carrier set of the algebra is

$$
A_{\text{CanonicalNat}} = \{\text{zero}, \text{succ(zero)}, \text{succ(succ(zero))}, \ldots\}
$$

Note that each member of the carrier set of a canonical term algebra is an individual term drawn from the term algebra. Compare this with the quotient term algebra where the individual members of the carrier set are sets of values (equivalence classes).

10.10.3 Canonical Term Algebras and Implementations

When an algebraic specification is refined into an implementation (no easy task for reasons we will explain later), a suitable representation for the values of the abstract data type is chosen from among the different models of the theory. More precisely, elements of the carrier set of the chosen model provide the representations for the values of the abstract data type. Each operation of the specification is then defined by a function (algorithm) whose domain and range data values are drawn from the terms of the carrier set of the implementation algebra.

The derivation of a canonical term algebra often provides a useful starting point for refining the specification into an implementation. The fundamental property that characterises a collection of canonical terms, namely that every term is equivalent to one canonical term, is used as an intrinsic property of the implementation in the sense that the implemented operations only act upon or return values which are the representations
of canonical terms. Such an implementation reaps the benefit that the equality predicate \(\mathit{\text{==}} \) which must be supplied in any implementation of an abstract data type, simply reduces to comparing canonical terms (normal forms). This leads naturally to the question of term-rewriting and the reduction of terms to canonical form. These ideas are now briefly explored.

10.11 Axioms as Equations

We have already seen that at one level, the axioms of an algebraic specification can be treated as equations in the mathematical sense. These equations can be used as rules of substitution which permit syntactically legal terms to be expressed in an equivalent form. In this situation, the equality relation \(\mathit{\text{"="}} \) is reflexive, symmetric and transitive.

10.12 Axioms as Rewrite Rules

We know also that the axioms of an algebraic specification can be treated as a collection of rewrite rules in which we use a restrictive form of equational logic. It is important to understand the difference between axioms (in the strict equational sense) and rewrite rules. We can represent a typical rewrite rule by

\[L \rightarrow R \]

where \(L, R \) denote the left and right components of the rule.

The fundamental difference between an axiom and a rewrite rule is that while equality for axioms is symmetric, that is \(L = R \) implies \(R = L \) and \(R = L \) implies \(L = R \), term re-writing schema treat axioms uni-directionally, for example as one way replacements from \(L \) to \(R \) say. Hence, when axioms are treated as rewrite rules, the operator \(\rightarrow \) is transitive, but not symmetric or reflexive. A computation which uses rewrite rules will produce a sequence of expressions \(E_1, E_2, \ldots, E_i \) by repeatedly replacing instances of the left-hand side of rules within an expression by their corresponding right-hand sides. This process will continue until an expression is obtained which contains no instances of any left-hand rule, in which case the process terminates. The resulting expression is said to be in a normal or reduced form. One restriction for such rewriting systems is that any free variable which occurs in the right-hand side \(R \) must also occur in the left-hand side \(L \).

10.13 Operational Semantics

The operational semantics of a programming language shows how computations are done in that language and in the case of algebraic specification languages, the operational semantics is based on term rewriting. For our language, the semantics of a \texttt{SPEC} module is prescribed by its axioms which are interpreted operationally as left to right rewrite rules in which instances of left-hand sides of axioms are replaced by their corresponding
right-hand sides until a value is obtained which contains no instance of any left-hand side.

The axioms of an algebraic specification can therefore be given an operational semantics by treating them as left to right rewrite rules and term rewriting provides the operational semantics used by executable algebraic specification languages such as OBJ and Axis to execute equationally defined specifications. It results in efficient computations without any need for backtracking.

If a set of rewrite rules has the following properties:

1. Finite termination: every sequence of rewrites from a given term \(t \) terminates after a finite number of steps (that is there are no infinite sequences of reductions from any term). (The Noetherian property).

2. Unique termination: every terminating sequence of rewrites from a given term \(t \) stops at a unique minimal form. This is the normal or reduced form, which will be denoted by \(t \downarrow \) (The Church-Rosser property).

it is said to be (finitely) convergent.

For these finitely convergent systems, term rewriting provides a feasible decision procedure for determining whether \(s = t \) can be proved as a consequence of a set of axioms, where \(s \) and \(t \) are syntactically legal terms which contain no variables (that is \(s \) and \(t \) are ground terms). In order to ascertain whether \(s = t \), first generate a sequence of rewrites for \(s \) until \(s \) is in normal form and repeat the process for \(t \). If the normal forms \(s \downarrow \) and \(t \downarrow \) are identical, then the terms \(s \) and \(t \) are equal in the sense that they both belong to the same equivalence class.

Exercise 10.6

Given a set of axioms \(E \), suppose that repeated term rewriting applied to the terms \(s \) and \(t \) produces the sequence of rewrites \(s, s_1, s_2, s_3, s \downarrow \) and \(t, t_1, t_2, t \downarrow \) respectively where \(s \downarrow \) and \(t \downarrow \) denote the corresponding normal forms.

1. Express these rewrites as a collection of individual rewrites.

2. If \(s \downarrow = t \downarrow \) use the inference rules of equational theory to show that the theorem \(s = t \) belongs to the equational theory of \(E \).

Exercise 10.7

Use the axioms of Stack to reduce each of the following terms to a normal form:

1. \(\text{pop}(\text{push}(\text{init},4)) \)

2. \(\text{top}(\text{push}(\text{init},4)) \)

3. \(\text{is-empty?}(\text{push}(\text{init},3)) \)
4. push(pop(push(init, 2)), 3)
5. push(push(init, 2), 3)
6. top(pop(push(push(init, 2), 3)))

10.14 Initial versus Final Semantics

To conclude this chapter, we include, for completeness, a brief introduction to final semantics. We have seen that the feature of initial models that makes them so significant for algebraic specification is that they contain "no junk, no confusion" and so capture the vital qualities ("nothing more, nothing less") of their specifications. There is an alternative way of handling the semantics of algebraic specifications, namely the final (also called the terminal) approach. This approach, as promoted by Guttag, considers the entire class or family of algebras defined by a specification. Whereas with initial semantics, two ground (variable-free) terms of the type of interest denote different (distinct) values unless they can be proved to be equivalent from the given axioms, with final semantics, two ground terms of the same sort denote the same value unless it can be proved from the axioms that they denote a different value. The meaning of this statement may not be immediately clear at first so we will explain the concept with a small example!

We can illustrate the difference between the two approaches by considering the specification Dual of Fig. 13.1. The initial algebra of this specification describes the bag of natural numbers with the operations empty (corresponding to the empty bag), add and is-in?. Under an initial interpretation, the axioms cannot be used to show, for example, that

\[
\text{add}(\text{add}(\text{add}(\text{empty}, 1), 1), 2) = \text{add}(\text{add}(\text{empty}, 1), 2)
\]

so that these two terms denote distinct values. Axiom (1) is necessary since it states a fundamental property of bags, namely that the order in which elements are added to a bag is irrelevant.

The final algebra of this specification has as a model the set of natural numbers with the operations empty (corresponding to the empty set, \(\emptyset\)), add and is-in?. With final semantics, to show that two expressions are not equal, we have to demonstrate that application of accessor operations to the expressions produces different results. For this example, with final semantics, two set values will be equal unless the application of is-in? to them results in different outcomes. For example, under a final interpretation, the terms \(s_1\) and \(s_2\) where

\[
s_1 = \text{add}(\text{add}(\text{add}(\text{empty}, 1), 1), 2) \quad ; \quad s_2 = \text{add}(\text{add}(\text{empty}, 1), 2)
\]

now denote the same value since the expression is-in?(s, n) will return true for both \(s = s_1\) and \(s = s_2\) when \(n = 1\) or \(n = 2\) and will return false when \(s = s_1\) and \(s = s_2\) for all other values of \(n\). In fact, it can be seen that we can remove the first axiom without altering the final semantics.

Exercise 10.8

With reference to the specification Dual given in Fig. 13.1, show that the terms
SPEC Dual

USING Boolean + Natural

SORT dual

OPS

 empty : -> dual
 add : dual nat -> dual
 is-in? : dual -> bool

FORALL

 n, n1, n2 : nat

 d : dual

AXIOMS:

 (1) add(add(d, n1), n2) = add(add(d, n2), n1)
 (2) is-in?(empty, n) = false
 (3) is-in?(add(d, n1), n2) = IF n1 == n2 THEN true
 ELSE is-in?(d, n2) ENDIF

ENDSPEC

Figure 10.5: Algebraic Specification Dual
add(add(empty, 3), 4) and add(add(empty, 4), 3) are equivalent under an initial interpretation and that they are equivalent under a final interpretation with or without axiom (1). Observe that the corresponding set of rewrite rules for Dual is not finitely convergent since axiom (1) would supply a non-terminating sequence of rewrites.

With final value semantics, the quotient term algebra for any given specification will contain fewer equivalence classes compared with the corresponding quotient term algebra for an initial interpretation. (This follows because more of the ground terms are equivalent under a final interpretation than with an initial one). It follows that the number of distinct values in the carrier set of a final model is less than for the corresponding initial model.

Both the initial and final approaches to semantics have their advantages and disadvantages and the ultimate reason for choosing one or the other is often a methodological one. In this respect, specification reusability and modularity considerations may well have an influence on the semantics chosen for a formal specification language. A more detailed discussion of these issues is beyond the scope of this book.

As a postscript, we present a mathematical definition of final algebras in a footnote which can be compared with a corresponding definition for initial algebras. ²

10.15 Summary

The principal results are presented in the summaries below.

10.15.1 Signatures and Algebras

- A many-sorted signature Σ consists of a collection of sorts and function symbols (operation names). Each function symbol has an associated domain and range which are taken from the collection of sorts.

- The function symbols of a signature are high-level abstractions of the operations of an abstract data type.

- There is no one-to-one correspondence between algebras and signatures.

- Signatures determine the set of all well-formed terms for each sort.

- A term (expression) of an algebraic specification is well-formed if it is a constant (nullary operation), a variable or an operation applied to the correct number of arguments, with each argument itself a well-formed term of the correct sort. The sort of a variable term is that stated in the variable declaration component of the specification (the FÖRALL section in an Axis specification).

- A heterogeneous algebra, A = [A, Ω] consists of a family of N carrier sets A = {Ai} with i = 1, 2, . . . , N together with a collection of operations Ω, whose domain and range belong to the family of carriers. A homogeneous algebra is an algebra

²An algebra F is final in a category C of algebras over a presentation if and only if F ∈ C and for each algebra A ∈ C, a unique homomorphism in C from A to F does exist.
whose carrier set consists of a single set of values. Algebras provide models of
specifications.

- Given a signature Σ, then any algebra $A = [A, \Omega]$ such that
 - each term belonging to the sort of Σ maps to a member of A
 - each function symbol $\sigma \in \Sigma$ maps to an operation $\omega \in \Omega$ of the appropriate
 arity, domain and range

is said to interpret that signature.

- A signature can denote many algebras, and the class of algebras which are models
 of a given signature is broad and very general. Some models may have undesirable
 properties.

- Homomorphisms are special mappings between the carrier sets of two algebras
 which preserve the structure imposed by the operations of the algebra. If the
 mapping is one-to-one, the two algebras are said to be isomorphic.

- The strongest measure of similarity that can be found between two algebras A
 and B is that where an isomorphism exists between A and B. For such algebras,
 there is a one-to-one correspondence between the members of the respective carrier
 sets. This means that if the function h maps values from A to B, then an inverse
 function (often denoted by h^{-1}) will map values the other way, that is from B to A.
 Isomorphic algebras are “abstractly” identical in the sense that the only possible
 difference between them is that their carrier sets differ in name.

10.15.2 Theory Presentations and their Interpretations

- Extending a signature, Σ, with a set of axioms, E, has the effect of “constraining”
 the resulting specification to describe more precisely the required properties of an
 abstract data type. The resulting specification is known as a presentation, and can
 be written as the tuple $< \Sigma, E >$.

- Given the presentation $< \Sigma, E >$, the set of all algebras which is denoted by Σ and
 which satisfy E is called the variety over the presentation.

- Use of the axioms together with the inference rules of equational logic allows equiva-
 lences between terms to be established and the set of all axioms which can be
 derived from a given set of axioms E is known as the closure of E.

- The closure defines all the “theorems” (equivalences between terms) provable within
 the presentation and we consider the closure as presenting a theory.

- A presentation together with the closure of its axioms is called a theory presentation.

- An algebra A is a model of a theory presentation if A is denoted the signature of
 the presentation and if the axioms of the presentation are satisfied by A.

- At least one model can always be found - the quotient term algebra in which the
 elements of the carrier set are the equivalence classes of terms constructed from the
 strings of symbols that are used to denote terms of the theory. The advantage of
 the term algebra is that it provides a symbolic representation of the theory which
 can be manipulated and treated as a model in its own right.
• There are many algebras which, with appropriate interpretations of the values and function symbols in a specification, provide models of an algebraic specification. The algebras which make up this family of models are related in that each member of the family can be derived from the initial algebra by a unique mapping (homomorphism).

• The initial algebra approach uses the unique (up to isomorphism) initial algebra as the standard representative model of the theory presentation. Initial models have the desirable properties of having no junk, and no confusion.

• The quotient term algebra is an initial algebra. All initial models of a presentation are isomorphic to each other and importantly, are therefore isomorphic to the quotient term algebra.

• Canonical terms, are a subset of the terms generated by the term algebra such that each term in the subset is a member of a different equivalence class. The resulting algebra of canonical terms is called the canonical term algebra and this algebra is isomorphic to the quotient term algebra and is therefore initial.

• Identification of an appropriate set of atomic constructors for an abstract data type provides a useful bridge between the canonical term algebra and the perceived behaviour of the operations of that abstract data type.

• The difference between initial and final semantics is also discussed with the aid of an example

 – with initial semantics, two ground terms of the same sort denote different values unless it can be proved from the axioms that they denote the same value

 – with final semantics, two ground terms of the same sort denote the same value unless it can be proved from the axioms that they denote a different value

Crudely speaking, proofs of equivalence with initial semantics involve applying the constructor operations whereas proofs of non-equivalence with final semantics involves application of accessor operations.

10.15.3 Axioms as Rewrite Rules

• The axioms of an algebraic specification can be treated as a set of left to right rewrite or production rules which permits any term matching the left-hand side of an axiom to be replaced by the corresponding right-hand side. These term-rewriting systems have a number of important applications -

 – initial algebra semantics can be implemented by an operational semantics based on rewrite rules.

 – a computation which uses rewrite rules produces a sequence of terms whereby instances of left-hand sides of axioms are replaced by the corresponding right-hand side until a normal or reduced form is obtained. If the sequence of rewrites always terminates and produces a unique normal form, the set of rewrite rules is finitely convergent.
- if a set of rewrite rules is finitely convergent, term rewriting provides a feasible decision procedure for determining whether two variable-free terms are equal, and so provides an operational semantics for executable algebraic specification languages such as OBJ and Axis.

Additional Problems – 10.

Problem 10.1

not included for Latex reasons - see book!

Problem 10.2

An algebra $\mathcal{A}_{\text{Natural}}$ where

$$\mathcal{A}_{\text{Natural}} = [\mathbb{N}, \{0, \text{Succ}, +, \times, \text{Pred}, -\}]$$

includes the unary operation $\text{Pred}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$\text{Pred}(n) = n-1$$

and the binary operation minus (-) in addition to the familiar successor (Succ), addition (+) and multiplication (\times) operations. This algebra is to provide a model of the natural numbers. What complication does the inclusion of the predecessor operation (Pred) and subtraction operation (-) introduce into a model of the natural numbers?

Problem 10.3

Show that the algebra

$$\mathcal{A}_{\text{NatOdd}} = [\mathbb{N}_{\text{Odd}}, \{1, \text{Succ}_{\text{Odd}}\}]$$

where $\mathbb{N}_{\text{Odd}} = \{1, 3, 5, \ldots\}$ is the set of odd natural numbers and $\text{Succ}_{\text{Odd}} : \mathbb{N}_{\text{Odd}} \rightarrow \mathbb{N}_{\text{Odd}}$ defined by $\text{Succ}_{\text{Odd}}(n) = n + 2 \ (\forall n \in \mathbb{N}_{\text{Odd}})$ provides an interpretation for the signature of Fig. 10.1.

Problem 10.4

Consider the algebra \mathcal{A}_{Nat} introduced at the start of this chapter and $\mathcal{A}_{\text{NatOdd}}$ of the previous problem (Problem 10.3). Show that the mapping $h : \mathbb{N} \rightarrow \mathbb{N}_{\text{Odd}}$ from the natural numbers to the odd natural numbers defined by $h(n) = 2n + 1$ for all $n \in \mathbb{N}$ is a homomorphism.

Problem 10.5

Show that the algebras \mathcal{A}_{Nat} and $\mathcal{A}_{\text{NatOdd}}$ are isomorphic.

Problem 10.6

Show that the algebra $\mathcal{A} = [A, \Omega]$ where

$$A = \{0, 1\} \quad \Omega = \{0, 1, \lnot, \land\}$$

with
true → 0 ; false → 1

and

-0 = 1 ; -1 = 0
0 ∧ 0 = 0 ; 0 ∧ 1 = 1
1 ∧ 0 = 1 ; 1 ∧ 1 = 1

is a model of Boolean given in Fig. 10.4. Is this model an initial one?

Problem 10.7

A rather simple but elegant illustration of “junk” and “confusion” in models of a specification can be derived by considering the specification Natural for natural numbers given in Fig. 10.3. One model of the specification is the algebra \([\mathbb{Z}, \{0, +1, +\}]\) where \(\mathbb{Z}\) is the set of integers, “+1” denotes the successor function and we use the interpretation

- \(\text{nat} \rightarrow \mathbb{Z}\)
- \(\text{succ} \rightarrow +1\)
- \(\text{add} \rightarrow +\)

\(\{\text{zero} \rightarrow 0, \ \text{succ}(\text{zero}) \rightarrow 1, \ \text{succ}(\text{succ}(\text{zero})) \rightarrow 2, \ldots\}\)

where + is the familiar mathematical addition operator.

The axioms of the specification are easily seen to be satisfied with this interpretation. However, for this model, the negative integer values \(-1, -2, -3, \ldots\) cannot be denoted by any term which belongs to \(\text{nat}\). In other words, these negative values cannot be denoted by terms which can be constructed using the operations of the specification Natural. This model has *junk*.

Another model of Natural is the algebra \([\mathbb{N}, \{0, +0, +\}]\) where \(\mathbb{N}\) is the set of natural numbers, “+0” is the function which leaves the value of its input argument unaltered, + is as before and we use the denotation

- \(\text{nat} \rightarrow \mathbb{N}\)
- \(\text{succ} \rightarrow +0\)
- \(\text{add} \rightarrow +\)

\(\{\text{zero} \rightarrow 0, \ \text{succ}(\text{zero}) \rightarrow 0, \ \text{succ}(\text{succ}(\text{zero})) \rightarrow 0, \ldots\}\)

The axioms of Natural are satisfied with this interpretation with all reducing to “0 = 0” and this model has *confusion*. This model has the undesirable property of collapsing all the terms of the specification onto a single element of the carrier and so renders
them indistinguishable. Terms such as zero and succ(zero), for example, which were intended to be distinct in the specification are denoted by the same value, 0, in this model. Junk and confusion in these models therefore debar them from being faithful interpretations of their corresponding specification Natural.

(a) When implementing a queue using an array, the queue tends to migrate through the available storage as data values are enqueued and dequeued and the bounds of the array can soon be reached even though the number of data values in the queue is less than the maximum size of the array. To avoid this problem, when a pointer (index) to the front/back of the queue is at a bound of the array and the queue is not full, we can "wrap" the queue around by resetting that pointer to the lowest location in the array (if we are currently at the highest) and vice-versa. As an example, suppose an array of size MaxSize is used with an index in the range 1..MaxSize. For this application, we might need a function SuccQ : N_Q → N_Q with the property

\[SuccQ(n) = (n + 1) \mod MaxSize \]

where N_Q denotes the set \{1, 2, 3, \ldots, MaxSize\} and MOD denotes the remainder when \(n + 1\) is divided by MOD. Create a specification ModMaxSize by using the specification Natural of Fig. 10.3 and including an additional axiom for an operation succQ which specifies the required "wrap-around" property. (To keep the problem simple, assume MaxSize = 3).

(b) Does the resulting specification ModMaxSize preserve the initial properties of Natural? If not, explain why.
Bibliography

A gentle introduction to algebras with the associated concepts of homomorphism, isomorphism and quotient algebras is given in Chapter 7 of

This text provides one of the best introductions to the structure and properties of algebraic systems. The book also provides a comprehensive account of the mathematics required for formal specification.
Chapter 11

Building Larger Specifications

11.1 Introduction

One of the fundamental tools for managing the complexity of software systems is modularity, whereby large products are composed from smaller, simpler and independent components using the glue of interfaces. One of the benefits that such an approach promotes is the reusability of software.

For algebraic specification languages, complex specifications are built up compositionally, in bottom-up fashion, from simpler algebraic specifications of abstract data types. Algebraic specifications developed this way have a hierarchical structure in the form of an acyclic graph of specification modules with the higher level modules "importing" the sorts and operations of lower level modules. This concept is apparent even in the simple specifications developed already such as Stack, Queue and Binary-tree where we have explicitly imported the (built-in) specification modules Boolean and Natural. The corresponding dependency graph for Queue is shown in Fig. 11.1. The statement

\[\text{USING Natural + Boolean} \]

which appears at the top of our specifications denotes that the pre-defined specification modules Natural and Boolean are available in those top-level specifications. The expression following the keyword USING is called a module expression and its signature consists of the union of the signatures of Natural and Boolean. We can think of USING as a "read-only" type of import in the sense that the importing module cannot alter the properties of the imported specifications. Specifications (theories) can be extended or enriched by introducing new operations and/or axioms into an existing specification. Specifications can also include operations and/or sorts of other specifications, define new sorts and/or operations for the included specification and then use them in conjunction with its own introduced sorts and operations.

In order to be able to reuse "formal specification software components", it is essential that an algebraic specification language allows generic or parameterised theories to be developed. For example, if we want to manipulate stacks of natural numbers, stacks of booleans and stacks of characters, we do not want to produce three different explicit
specifications. The key concept here is that the characteristic operations of a stack are quite independent of the type of the data items it manipulates. In other words, the type of the items pushed onto a stack is quite irrelevant to the operations of the stack. This immediately suggests the possibility of producing a generic or parametric specification along the lines of

\[
\text{SPEC Stack}(S : \text{Specification-Class})
\]

where \(S \) is a formal parameter that represents any SPEC module which is a member of a class of specifications \(\text{Specification-Class} \), that class characterised by some common property. That property could be a very general one such as requiring only the existence of a named sort. We could then supply an actual specification parameter such as Natural, Boolean or Identifier in place of \(S \), that is instantiate the parametric specification to create the desired instance of a specification. For example, a stack of natural numbers and a stack whose data elements are character strings could be generated using the two instantiations

\[
\text{Stack(Natural) ; Stack(Identifier)}
\]

respectively. This facility clearly promotes the reuse of theories but the way in which parameterisation is handled does differ from one algebraic specification language to another. In the case of the early algebraic specification language \(\text{ACT ONE} \), parameterised specifications can be derived which take both sorts and operations as actual parameters while the language \(\text{Clear} \) incorporates a more powerful form of parameterisation in that it allows the production of theory procedures which take other theories as actual parameters. We will develop a framework for handling parameterisation which includes this more powerful generic facility.

Following the style of Axis \(^1\) the class of specifications \(\text{Specification-Class} \) will be denoted by so-called PROPS specification modules. PROPS modules will be introduced to define the class of specifications that can be used to instantiate a parameterised SPEC module. Unlike ordinary SPEC modules, generic specifications are not interpreted initially because any given actual parameter (SPEC module) may have “more properties”

\(^1\)©Hewlett-Packard Ltd. 1988

```
Queue
  /
  \using /
  \using /
  /
  /
  /
  /
  \/
  \/
Boolean Natural
```

Figure 11.1: Illustration of the dependency of Queue on Natural and Boolean
(for example more operations) than specified in the formal parameter. A PROPS specification therefore defines the interface of a parameterised specification in the sense that it declares the structure and properties required of an actual parameter (a SPEC module) for meaningful instantiation. These ideas will be developed later.

To start, however, we expand upon the idea of building up larger specifications from simpler ones and illustrate the concept with two small case studies. First we derive an algebraic specification for the estate agent example which was developed earlier using VDM. We also produce a specification for a small control system which regulates the operations of filling and emptying petrochemical tanks. This case study will be developed and expanded by specifying a real-time monitoring system for a petrochemical plant which collects data from a number of petrochemical tanks and is responsible for conveying information about that data.

11.2 Estate Agent Example

We now derive an algebraic specification for the Estate Agent’s record system, an example studied earlier in chapter 3.

11.2.1 For-sale and Under-offer Mode

To start, we will specify a two-valued data type Mode which consists of the elements for-sale and under-offer which will be used to denote whether or not an offer has been made on a house. The specification is given in Fig. 11.2. For simplicity, we will treat a house address as a single identifier in which case we can use the “built-in” specification module identifier with a suitable renaming of its sort id to address. This is denoted in Axis by the statement

\[
\text{WITH id AS address}
\]

The specification Address is given in Fig. 11.3.

11.2.2 Operations for the Database

The operations we require for the specification Houses-for-sale are

\[
\begin{align*}
\text{SPEC} & \quad \text{Mode} \\
\text{SORT} & \quad \text{mode} \\
\text{OPS} & \\
\text{for-sale} & : \rightarrow \text{mode} \\
\text{under-offer} & : \rightarrow \text{mode} \\
\end{align*}
\]

Figure 11.2: Specification of the two-valued abstract data type Mode
- **empty**: create an empty database
- **insert**: insert a new address into the database
- **add-house**: add an address into the database regardless of whether the address is already in the database
- **delete-house**: remove a given house from the database
- **is-on-market?**: check whether a given address is in the database
- **make-offer**: take an address which is for sale and put it under offer
- **is-under-offer?**: checks whether a particular address is under offer

We need two constructors `insert` and `add-house` because we have to restrict the values of the type. The operation `add-house` is too general in that it allows addresses to be entered into the database whether they are present or not so we have introduced another constructor `insert` which only adds an address into the database if that address is *not* already present. The operation `insert` is to provide the only means for creating a valid database, so we insist that the constructor `add-house` must be inaccessible to any user of the specification. We therefore treat the operation `add-house` as *private* so that it cannot be exported and any user will view `empty` and `insert` as the atomic constructors. Following the convention introduced in Chapter 9, we declare the operation private (hidden) by prefixing it with an exclamation mark. (This idea of hidden operations was introduced in Chapter 9 when we looked at the specification of an ordered binary tree).

Denoting the introduced sort of *Houses-for-sale* by `house-db`, the signature of these operations is shown in Fig. 11.4.

```
SPEC Address
USING Identifier
    WITH id AS address
ENDSPEC
```

Figure 11.3: Specification of the abstract data type `Address`
SORT house-db

OPS

empty : -> house-db

insert : house-db address -> house-db

!add-house : house-db address mode -> house-db

delete-house : house-db address -> house-db

make-offer : house-db address -> house-db

is-on-market? : house-db address -> bool

is-under-offer? : house-db address -> bool

Figure 11.4: Signature of Houses-for-sale
A word of explanation is needed concerning the different domain sorts of the operations insert and !add-house. The operation !add-house adds a given address to the database regardless of whether the address is already in the database or not and regardless of its “mode”, (for-sale or under-offer). On the other hand, insert only adds a new address into the database in which case the mode of that address is set to “for-sale”.

If the database is empty, then “inserting” any address addr is the same as “adding” a new house to the database. This result is expressed by the axiom

\[
\text{insert}(\text{empty}, \text{addr}) = \text{!add-house}(\text{empty}, \text{addr}, \text{for-sale})
\]

where it has been “flagged” as being for-sale. For a non-empty database, we do not want to add an address if it is already in the database. The outcome of attempting to “insert” an address addr2 into a database hs to which the address addr1 has previously been added, is given by the axiom

\[
\text{insert}(\text{!add-house}(\text{hs}, \text{addr1}, \text{m}), \text{addr2}) =
\]

IF \(\text{addr1} = \text{addr2} \) THEN !add-house(\(\text{hs}, \text{addr1}, \text{m} \))
ELSE !add-house(insert(\(\text{hs}, \text{addr2} \), \(\text{addr1}, \text{m} \)) ENDIF

where \(\text{m} \in \text{mode} \).

Let us examine this axiom in more detail. When a new address addr2 is inserted, the statement

\[
\text{!add-house}(\text{insert}(\text{hs}, \text{addr2}), \text{addr1}, \text{m})
\]

(which follows the ELSE delimiter) ensures that the updated value of the database expression will, after the appropriate number of recursive applications of insert, end up as the expression

\[
\text{!add-house}(\text{!add-house}(\ldots, \text{insert}(\text{empty}, \text{addr2}), \ldots))
\]

The inner-most subterm insert(empty, addr2) then terminates the recursion since it “adds” the address (using !add-house) and flags it as being for-sale. It is worth expanding upon this idea a little by constructing some values of the sort house-db.

To start, consider the value of the database obtained by “inserting” the address ‘‘house1’’ into an empty database. The resulting database \(\text{hs1} \in \text{house-db} \) is

\[
\text{hs1} = \text{insert}(\text{empty}, ‘‘house1’’)
\]

and use of the axiom above gives

\[
\text{hs1} = \text{!add-house}(\text{empty}, ‘‘house1’’, \text{for-sale})
\]
If we now insert a new address "house2", the value of the database is the element hs2 where

\[
hs2 = \text{insert}(hs1, \text{"house2"})
\]
\[
= \text{insert}(!\text{add-house}(\text{empty}, \text{"house1"}, \text{for-sale}), \text{"house2"})
\]
\[
= !\text{add-house}(!\text{add-house}(\text{empty}, \text{"house2"}), \text{"house1"}, \text{for-sale})
\]
\[
= !\text{add-house}(!\text{add-house}(\text{empty}, \text{"house2"}, \text{for-sale}),
\text{"house1"}, \text{for-sale})
\]

The reader is strongly encouraged to try inserting "house1" again and then "house2" again into the database hs2 and so confirm that the integrity of the database is preserved.

Exercise 11.1

Suppose a third new address "house3" is to be inserted into the database hs2 above to produce a new database hs3. Express hs3 in terms of the atomic constructors empty and !add-house. Verify also that "inserting" any of the existing addresses again into the database will not alter the value of hs3.

11.2.3 Axioms for "delete-house"

Firstly, we assert that removing an address from an empty database results in an empty database, which produces the axiom

\[
\text{delete-house}(\text{empty}, \text{addr}) = \text{empty}
\]

For the general non-empty database expression !add-house(hs, addr1, m), the effect of deleting the address addr2 is given by the expression

\[
\text{delete-house}(!\text{add-house}(hs, addr1, m), addr2)
\]

Clearly, if the two addresses are the same, the result is simply hs. If the two addresses addr1, addr2 are not the same, we need to re-apply the operation delete-house to the ("truncated") database before addr1 was added, that is to hs. In order to preserve the existence of addr1 in the database, we must, however, then re-instate addr1 which is achieved by applying !add-house. These results are expressed in the axiom

\[
\text{delete-house}(!\text{add-house}(hs, addr1, m), addr2) =
\]
\[
\text{IF } addr1 == addr2 \text{ THEN } hs
\]
\[
\text{ELSE } !\text{add-house}\left(\text{delete-house}(hs, addr2), addr1, m\right) \text{ ENDIF}
\]

The reader may wonder why the operation !add-house appears following the ELSE rather than insert. The reason is that the entry addr1 which has to be reinstated may be "under-offer" (that is its associated value m is under-offer and if we then subsequently
put \texttt{addr} back into the database using \texttt{insert}, its mode \texttt{m} will be re-initialised back to \texttt{under-offer}. Notice the similarity of this axiom with that for the operation \texttt{remove} given in the specification \texttt{Queue} of chapter 9. As there, the effect of the “delete” operation on an “add” involves interchanging the positions of the two constructor operations. Note also that the effect of deleting an address which is not present in the database will leave the database unaltered.

Exercise 11.2

Delete the entry “house2” from the database \texttt{hs2} given in the previous exercise.

11.2.4 Axioms for “is-on-market?”

The operation \texttt{is-on-market?} tests whether a given address is in the database, \textit{regardless} of whether that address is “for sale” or “under offer”. (We have a further operation \texttt{is-under-offer?} which tests whether a specified address has had an offer made). It is evident that if the database is empty, the result of the query will return \texttt{false}, so that

\[
\text{is-on-market?} (\text{empty}, \text{addr}) = \text{false}
\]

In the case of the query

\[
\text{is-on-market?}(!\text{add-house}(\text{hs}, \text{addr1}, \text{m}), \text{addr2})
\]

if the addresses \texttt{addr1} and \texttt{addr2} are equal, then \texttt{is-on-market?} returns \texttt{true}. If the addresses are not equal, we then need to repeat the enquiry on the database \texttt{hs}. This result is expressed in the axiom

\[
\text{is-on-market?}(!\text{add-house}(\text{hs}, \text{addr1}, \text{m}), \text{addr2}) =
\]

\[
\text{IF} \ \text{addr1} == \text{addr2} \ \text{THEN} \ \text{true}
\]

\[
\text{ELSE} \ \text{is-on-market?}(\text{hs}, \text{addr2}) \ \text{ENDIF}
\]

Exercise 11.3

Given the database \texttt{hs2} defined above, use the axioms for \texttt{is-on-market?} to show that

(a) \texttt{is-on-market?}(\texttt{hs2}, ’house1’) = \texttt{true}

(b) \texttt{is-on-market?}(\texttt{hs2}, ’house3’) = \texttt{false}

11.2.5 Axioms for “is-under-offer?”

The operation \texttt{is-under-offer?} tests whether a given address is “under offer” in the database. To start, we assert that the outcome of the query will return \texttt{false} if the database is empty.
is-under-offer?(empty, addr) = false

Consider now the result of

\[
is-under-offer?(!add-house(hs, addr1, m), addr2)
\]

If the addresses \(addr1 \) and \(addr2 \) are the same, the house will be under offer if the value of \(m \) is \textit{under-offer}. If the addresses are not the same, we need to check the rest of the database, that is \(is-under-offer?(hs, addr2) \). The axiom which expresses this statement is

\[
is-under-offer?(!add-house(hs, addr1, m), addr2) =
\]

IF \(addr1 == addr2 \) THEN

IF \(m == \text{under-offer} \) THEN true

ELSE false ENDIF

ELSE is-under-offer?(hs, addr2) ENDIF

(It is important to realise that this operation will also return \textit{false} if the specified address is \textit{not} in the database).

11.2.6 Axioms for "make-offer"

The operation \textit{make-offer} needs to search through the database for the specified address and then check its status. If the house is not yet under offer, the operation can change the status of the address by first deleting that address from the database and then adding it into the database with its status flagged as \textit{under-offer}. If the database is empty or the house is already under offer, the state of the database should remain unchanged and if the specified address is not in the database, the value of the database should also be unaltered. The axioms for \textit{make-offer} therefore take the form

\[
\text{make-offer}(\text{empty, addr}) = \text{empty}
\]

\[
\text{make-offer}(!\text{add-house}(hs, addr1, m), addr2) =
\]

IF \(addr1 == addr2 \) THEN

IF \(m == \text{for-sale} \) THEN

!add-house(delete-house(hs, addr1), addr1, under-offer)

ELSE !add-house(hs, addr1, m) ENDIF

\]
Although the second axiom appears complicated, some explanation should help to clarify matters. Firstly, if the two addresses are the same and the address is already under-offer, then we require make-offer to leave the state of the database unchanged, (that is the application make-offer to the database on the left-hand side of the axiom will return that same database). This situation is expressed by the statement following the first ELSE.

If, on the other hand, the two addresses are not the same, we need to repeat the operation make-offer on the database hs before address addr1 was added. As with the case of the operation delete-house, we must preserve the entries in the database, so we must re-insert the address addr1 (and its associated status m) into the database. This is expressed by the statement following the final ELSE. The complete specification Houses-for-sale is shown in Fig. 11.5.

Exercise 11.4

Use the axioms derived above to show that

(a) is-under-offer?(hs2, "house-1") = false

(b) is-under-offer?(make-offer(hs2, "house-2"), "house-2") = true
SPEC Houses-for-sale

USING Address + Mode + Boolean

SORT house-db

OPS

empty : -> house-db

insert : house-db address -> house-db

!add-house : house-db address mode -> house-db

delete-house : house-db address -> house-db

make-offer : house-db address -> house-db

is-on-market? : house-db address -> bool

is-under-offer? : house-db address -> bool

FORALL

hs : house-db

addr, addr1, addr2 : address

m : mode

AXIOMS:

(1) insert(empty, addr) = !add-house(empty, addr, for-sale)

(2) insert(!add-house(hs, addr1, m), addr2) =

IF addr1 == addr2 THEN

!add-house(hs, addr1, m) ELSE

!add-house(insert(hs, addr2), addr1, m) ENDIF
3) delete-house(empty, addr) = empty
4) delete-house(!add-house(hs, addr1, m), addr2) =
 IF addr1 == addr2 THEN hs ELSE
 !add-house(delete-house(hs, addr2), addr1, m) ENDIF
5) is-on-market?(empty, addr) = false
6) is-on-market?(!add-house(hs, addr1, m), addr2) =
 IF addr1 == addr2 THEN true
 ELSE is-on-market?(hs, addr2) ENDIF
7) is-under-offer?(empty, addr) = false
8) is-under-offer?(!add-house(hs, addr1, m), addr2) =
 IF addr1 == addr2 THEN
 IF m == under-offer THEN true
 ELSE false ENDIF
 ELSE is-under-offer?(hs, addr2) ENDIF
9) make-offer(empty, addr) = empty
10) make-offer(!add-house(hs, addr1, m), addr2) =
 IF addr1 == addr2 THEN
 IF m == for-sale THEN
 !add-house(delete-house(hs, addr1), addr1, under-offer)
 ELSE !add-house(hs, addr1, m) ENDIF
 ELSE
 !add-house(make-offer(hs, addr2), addr1, m) ENDIF

Figure 11.5: Specification Houses-for-sale
11.3 Compound Modules

Algebraic specifications can be built up hierarchically whereby larger theories are developed as *enrichments* or *extensions* of others. All algebraic specification languages provide certain theory building operations, or * combinators* which allow theories to be amalgamated and extended. We should alert the reader to the fact that there is no standard terminology used in this area.

11.3.1 Combinators

Axis provides two theory-building constructs by which algebraic specifications can be built on top of other specifications, namely the combinators **USING** and **INCLUDING**. The combinator **USING** permits “read only” access to a specification while **INCLUDING** permits part or all of an existing specification to be imported and so allows it to be modified. The specification that is accessed or imported is given by a *module expression*. More precisely, **USING** and **INCLUDING** are defined as follows

- **USING** – if a module S accesses a module T by means of a **USING** combinator, it is illegal for S to introduce any new values of T or make any distinct values of T equal.

- **INCLUDING** – if a module S imports a module T by means of the **INCLUDING** combinator, then S can modify the sort(s) of T (for example by introducing new values of the imported sort through the use of nullary operations) and can introduce additional axioms to compel distinct values of T to be equal.

The **USING** construct therefore provides an extension which does not invalidate any of the previous properties of the accessed specification and so avoids introducing *junk* and *confusion* if the original specification is an initial model. On the other hand, **INCLUDING** provides a means of importing module expressions which does not require them to be protected. In essence, we can think of the text of an “**INCLUDED**” module as being copied in with the result that the sorts which are consequently copied in and which are now “owned” by the (larger) “**INCLUDING**” module can be modified. For example, the enlarged specification may introduce new values for an existing specification (and so destroy the initial semantics of that imported specification).

11.3.2 Module Expressions

Module expressions can be used to build complex specifications which are then included in a specification by means of the **USING** or **INCLUDING** combinators.

A module expression can take any one of the following forms:

1. the identifier of an unparameterised **SPEC** module
2. the instantiation of a parameterised **SPEC** module
The following points should be noted

- Given two specifications \(M_1 \) and \(M_2 \), the specification sum (or union) \(M_1 + M_2 \) combines the sorts, operations and axioms of the two specifications to form an enlarged specification with duplicated components included only once.

- With USING, regardless of how many times a module \(T \) is imported by a module \(M \), module \(M \) inherits one and only one copy of the signature of \(T \). (We use the term signature in this context to denote the collection of sorts and operations with their associated domain and range sorts). For example, if a module \(S_1 \) imports \(T \), a module \(S_2 \) imports \(S_1 + T \) and a module \(S_3 \) imports \(S_1 + S_2 + T \), then only one copy of \(T \) is imported into module \(S_3 \).

- As part of the process of constructing larger specifications, we follow standard practice by providing a feature whereby existing specification modules can be renamed to reflect their intended use. This feature is provided by the WITH combinator which allows part or all of a module's owned signature to be renamed.

11.4 Petrochemical Plant Example

This example will illustrate the concept of module expressions and combinators.

Suppose a piece of software is needed to control the operation of a petrochemical plant which consists of a number of similar petrochemical storage tanks containing different petrochemicals. Suppose further that an individual component of the software system is required to control the filling and emptying of the tanks. Let us assume that any petrochemical tank can contain one of five petrochemicals \(pc_1, pc_2, pc_3, pc_4, pc_5 \) and each has the same maximum capacity denoted by \(\text{max-vol} \). A useful abstract data type for such a computer program is Tank.

11.4.1 Petrochemical Tank – Version 1

An appropriate set of operations for the abstract data type Tank is

- \textbf{new} : an operation which corresponds to an empty tank

- \textbf{add-chem} : an operation which adds a specified amount of petrochemical to a tank such that the amount added does not cause the tank to overflow and the petrochemical added is the same as that currently in the tank

- \textbf{fill} : an operation which adds a specified amount of a given petrochemical to a tank regardless of the amount or type of petrochemical in the tank
• **remove** : an operation which removes a specified amount of petrochemical from the tank. If the tank is empty, the operation should return an empty tank, while an attempt to remove a quantity in excess of the current contents should also return an empty tank

• **empty-tank** : an operation which takes a tank and “empties” the entire contents of the tank

• **change-pc** : an operation which fills a non-empty tank with a specified amount of a given petro-chemical. The existing contents of the tank must first be removed before filling with the specified petrochemical. The amount added must not exceed **max-vol**

• **is-empty?** : an operation which returns true if the tank is empty, false otherwise

• **is-full?** : an operation which returns true if the tank is full, false otherwise

• **chem** : an operation which returns the petrochemical contained in a non-empty tank

• **level** : an operation which returns the amount of petrochemical in the tank

To start, we need to specify an abstract data type **PetroChemical** which specifies the five petrochemicals. The specification is given in Fig. 11.6 where **chemical** denotes the corresponding sort.
SPEC PetroChemical

SORT chemical

OPS

 pc1 : -> chemical
 pc2 : -> chemical
 pc3 : -> chemical
 pc4 : -> chemical
 pc5 : -> chemical

ENDSPEC

Figure 11.6: Specification of the petrochemicals
We assume also the availability of a specification Real with sort real to represent the non-negative amount of petrochemical in the tank. (To be more faithful to the spirit of the algebraic approach, we could specify an abstract data type Amount with associated operations to “add” and “subtract” amounts but to keep the example simple, we “cheat” by using a standard data type specification with provided operations “ + ” and “ - ”).

The domain and range sorts of the operations is given in Fig. 11.7 where tank denotes the sort of Tank and ne-tank is a subsort of tank which denotes the collection of non-empty tank values.
new : \(\rightarrow \) tank

add-chem : tank chemical real \(\rightarrow \) tank

!fill : tank chemical real \(\rightarrow \) ne-tank

remove : tank real \(\rightarrow \) tank

empty-tank : tank \(\rightarrow \) tank

change-pc : tank chemical real \(\rightarrow \) tank

is-empty? : tank \(\rightarrow \) bool

is-full? : tank \(\rightarrow \) bool

chem : ne-tank \(\rightarrow \) chemical

level : tank \(\rightarrow \) real

max-vol : \(\rightarrow \) real

Figure 11.7: The syntax of the operations of Tank
In the discussion of Tank which follows, we use the variables

- \(c, \ c_1, \ c_2 \in \text{chemical} \) to denote petrochemical values
- \(q, \ q_1, q_2 \in \text{real} \) to denote the quantity of petrochemical in a tank

11.4.2 The Constructors “add-chem” and “!fill”

To preserve the integrity of the values of our data type tank, we need the constructor \texttt{add-chem} since the operation \texttt{fill} adds a petrochemical without checking either the existing contents of the tank or the amount added. The operation \texttt{add-chem} provides the “proper” way of adding the petrochemical where “proper”, in this sense, means that if the tank is originally empty, the amount added must not exceed max-vol. If the tank is not empty, the petrochemical to be added must be the same as that in the tank and the quantity added must not cause the tank to overflow. We require the operation \texttt{add-chem} to provide the only means for creating well-formed values of the sort \texttt{tank}. We therefore declare the operation \texttt{fill} as private (by prefixing “!” to its name) to signify that it cannot be exported and any \texttt{user} will view \texttt{new} and \texttt{add-chem} as the atomic constructors.

In the case of adding a specified petrochemical to an empty tank, the only constraint is that the amount added should not exceed max-vol. If the quantity to be added exceeds the maximum, we stipulate, for the purposes of this version of the example, that the operation should return a full tank. This is expressed in the axiom

\[
\text{add-chem}(\text{new}, \ c, \ q) = \\
\text{IF} \ q == 0.0 \ \text{THEN} \ \text{new} \\
\text{ELSEIF} \ q < \text{max-vol} \ \text{THEN} \\
\ !\text{fill}(\text{new}, \ c, \ q) \\
\text{ELSE} \ !\text{fill}(\text{new}, \ c, \ \text{max-vol}) \ \text{ENDIF}
\]

In the case of a non-empty tank containing an amount \(q_1 \) of petrochemical \(c_1 \), adding an amount \(q_2 \) of the same petrochemical will result in a tank containing the quantity \(q_1 + q_2 \) provided \(q_1 + q_2 \leq \text{max-vol} \). An attempt to add an excessive quantity of \(c_1 \) is to leave a full tank and we stipulate that an attempt to add a different petrochemical \(c_2 \) is to leave the contents of the tank unaltered. These properties are described by the axiom

\[
\text{add-chem}(!\text{fill}(\text{new}, \ c_1, \ q_1), \ c_2, \ q_2) = \\
\text{IF} \ c_1 == c_2 \ \text{THEN} \\
\text{IF} \ (q_1 + q_2) < \text{max-vol} \\
\ \text{THEN} \ !\text{fill}(\text{new}, \ c_1, \ q_1 + q_2)
\]
The axioms for the operation \texttt{add-chem} ensure that the values of \texttt{tank} conform to the well-formed expressions we require. (In VDM, such constraints could be expressed by the pre- and post-conditions attached to each operation and by the data type invariant). These two axioms for \texttt{add-chem} ensure that all well-formed expressions of sort \texttt{tank} take \textit{one} of the forms

- \texttt{new}
- \texttt{!fill(new, c, q)} with $c \in \text{chemical}$ and $0.0 < q \leq \text{max-vol}$

Note that the result of an \texttt{add-chem} operation will be either an empty tank, \texttt{new} or a \textit{non-empty} tank \texttt{!fill(new,c,q)} where $q > 0$. For this reason, we take the range of \texttt{add-chem} to be \texttt{tank} (which includes both the empty tank \texttt{new} and non-empty tank values), while the range of \texttt{!fill} is \texttt{ne-tank}.

In practice, we would also require operations to warn of attempts being made to add too much chemical or mix chemicals. This extension is left as an exercise and is described in the additional problems (Problem 11.6) which appear at the end of the chapter.

11.4.3 Axioms for “\texttt{remove}”, “\texttt{empty-tank}” and “\texttt{change-pc}”

In the case of \texttt{remove} acting upon an empty tank, we return the empty tank so that

$$\text{remove(new, q) = new}$$

while removing an amount q_2 from a tank containing q_1 will result in a tank with contents $q_1 - q_2$ (provided $q_1 > q_2$). If $q_1 \leq q_2$, we specify that the result returned should be \texttt{new}. The corresponding axiom is therefore

$$\text{remove(!fill(new, c_1, q_1), q_2) =}$$

$$\text{IF } q_1 > q_2 \text{ THEN add-chem(new, c_1, q_1 - q_2)}$$

$$\text{ELSE new ENDIF}$$

The axioms satisfied by \texttt{empty-tank} are immediately seen to be

$$\text{empty-tank(new) = new}$$

$$\text{empty-tank(!fill(new, c, q)) = new}$$
For the operation change-\text{pc}, we must first remove the entire contents of the tank (if any) and then "add" the given petrochemical. If the tank is initially empty, we specify that the operation change-\text{pc} is equivalent to add-chem. This leads to the axioms

\[
\text{change-\text{pc}}(\text{new}, c, q) = \text{add-chem}(\text{new}, c, q)
\]

\[
\text{change-\text{pc}}(!\text{fill}(\text{new}, c_1, q_1), c_2, q_2) = \\
\text{add-chem}(\text{empty-tank}(!\text{fill}(\text{new}, c_1, q_1)), c_2, q_2)
\]

Note that the right-hand sides of the axioms for remove and change-\text{pc} use the constructor add-chem to ensure that the resulting values of the sort tank are well-formed.

11.4.4 Axioms for Boolean-valued Operations

The axioms for is-empty? and is-full? are derived immediately

\[
\text{is-empty?}(\text{new}) = \text{true}
\]

\[
\text{is-empty?}(!\text{fill}(\text{new}, c, q)) = \text{false}
\]

\[
\text{is-full?}(\text{new}) = \text{false}
\]

\[
\text{is-full?}(!\text{fill}(\text{new}, c, q)) = (q = \text{max-\text{vol}})
\]

11.4.5 Axioms for "chem" and "level"

The remaining operations chem and level are accesor which "select" the kind of petrochemical (for a non-empty tank) and the quantity of that petrochemical respectively. The corresponding axioms are

\[
\text{chem}(!\text{fill}(\text{new}, c, q)) = c
\]

\[
\text{level}(\text{new}) = 0.0
\]

\[
\text{level}(!\text{fill}(\text{new}, c, q)) = q
\]

The complete specification \text{Tank} is shown in Fig. 11.8.

Before leaving this example, the reader may wonder whether the second axiom for is-empty? should be

\[
\text{is-empty?}(!\text{fill}(\text{new}, c, q)) = (q = 0.0)
\]
In fact, study of the “constructor” axioms which define `add-chem`, `remove` and `empty-tank` and `change-pc` reveals that the term “`!fill(new, c, 0.0)`” cannot result from the application of any of these operations.

Exercise 11.5

Use the axioms of Tank to reduce the following expressions

(a) `remove(add-chem(add-chem(new, pc1, 50.0), pc1, 60.0), 30.0)`

(b) `level(change-pc(!fill(new, pc1, 70.0), pc2, 40.0))`

where `pc1`, `pc2` ∈ `chemical`. (Note that (a) corresponds to adding a quantity 50.0 of petrochemical `pc1`, then adding a further quantity 60.0 and then removing a quantity 30.0 – so we should end up with an amount 80.0 !).
SPEC Tank

USING PetroChemical + Real + Boolean

SORTS ne-tank tank

SUBSORT ne-tank < tank

OPS
 new : -> tank
 add-chem : tank chemical real -> tank
 !fill : tank chemical real -> ne-tank
 remove : tank real -> tank
 empty-tank : tank -> tank
 change-pc : tank chemical real -> tank
 is-empty? : tank -> bool
 is-full? : tank -> bool
 chem : ne-tank -> chemical
 level : tank -> real
 max-vol : -> real

FORALL
 c, c1, c2 : chemical
 q, q1, q2 : real

AXIOMS:
(1) add-chem(new, c, q) =
 IF q == 0.0 THEN new
 ELSEIF q < max-vol THEN
 !fill(new, c, q)
 ELSE !fill(new, c, max-vol) ENDIF
(2) add-chem(!fill(new, c1, q1), c2, q2) =
 IF c1 == c2 THEN
 IF (q1 + q2) < max-vol
 THEN !fill(new, c1, q1 + q2)
 ELSE !fill(new, c1, max-vol) ENDIF
 ELSE !fill(new, c1, q1) ENDIF

(3) remove(new, q) = new

(4) remove(!fill(new, c1, q1), q2) =
 IF q1 > q2 THEN add-chem(new, c1, q1 - q2)
 ELSE new ENDIF

(5) empty-tank(new) = new

(6) empty-tank(!fill(new, c, q)) = new

(7) change-pc(new, c, q) = add-chem(new, c, q)

(8) change-pc(!fill(new, c1, q1), c2, q2) =
 add-chem(empty-tank(!fill(new, c1, q1)), c2, q2)

(9) is-empty?(new) = true

(10) is-empty?(!fill(new, c, q)) = false

(11) is-full?(new) = false

(12) is-full?(!fill(new, c, q)) = (q == max-vol)

(13) chem(!fill(new, c, q)) = c

(14) level(new) = 0.0

(15) level(!fill(new, c, q)) = q

ENDSPEC

Figure 11.8: Algebraic specification of a small petrochemical control system – version 1
For this example, we have handled the (potential) problems that can arise such as overfilling a tank or adding a different petrochemical to a tank by demanding that `add-chem` should return a full tank or leave the value of the tank unaltered respectively. This treatment is very much in the spirit of “damage limitation” but leaves us with the concern that these potentially dangerous situations should be treated as alarm or danger values and signalled as such. One way of handling this is to introduce an error value together with a boolean operation `alarm?` which returns `true` if either (or both) of the above situations arises. This approach will now be examined as we develop a second version of the specification `Tank`.

11.5 Petrochemical Tank - Version 2

The interesting feature of the abstract data type `Tank` is that it is a *bounded* structure (bound by the *finite size* of a petrochemical tank). Were we to place no restrictions on the size of a tank and to allow the mixing of petrochemicals, then every tank value could be generated using the atomic constructors `new` and `add-chem` (the operation `!fill` being superfluous). What we have, however, is the situation in which the set of allowable sort values is characterised by having a *quantity* not exceeding `max-vol` and containing a *single* petrochemical. This situation is analogous to a *bounded* stack in which the constructor operation `push` is now a *partial* operation. In the case of a bounded stack, stack values for which `push` is a valid operation cannot be expressed directly as a set generated by an arbitrary number of applications of `push` and `init`. The values of the sort `stack` are now characterised by the condition that the “length” of the stack (that is the number of items on the stack) must not exceed the bound. The values of the sort `stack` are therefore constrained in the sense of being restricted to a subset of those for the unbounded stack. Such “sort constraints” do require subtle handling but can be encompassed within an initial algebra semantics.

Without going into elaborate detail, we present a second version of the specification `Tank`. This is similar to the previous specification, but we now include a *supersort* `err-tank` (of the sort `tank`) which contains the exceptional value `error` together with the additional operation `alarm?` which returns `true` if an attempt is made to add too much petrochemical or mix two petrochemicals. The sort of non-empty tank values `ne-tank` is a subset of `tank` which is itself a subset of `err-tank`. We express these subsort relations as

\[
\text{SUBSORTS } \text{ne-tank} < \text{tank} < \text{err-tank}
\]

As before, we need the two constructors `add-chem` and `!fill`

\[
\text{add-chem : err-tank chemical real } \to \text{ err-tank}
\]

\[
\text{!fill : tank chemical real } \to \text{ ne-tank}
\]

together with the operation `alarm?` and the nullary operation `error` with syntax

\[
\text{alarm? : err-tank } \to \text{ bool}
\]
error : -> err-tank

The domain and range sorts of the other operations are as given previously except for
the operation change-pc which now has the signature

change-pc : tank chemical real -> err-tank

The operation add-chem will produce an error value if the amount of petrochemical added
causes the tank to overflow or if two different petrochemicals are mixed. This is expressed
by the axioms

\[
\text{add-chem(new, c, q)} = \begin{cases}
\text{IF } q = 0.0 \text{ THEN } \text{new} \\
\text{ELSEIF } q \leq \text{max-vol} \text{ THEN} \\
\text{!fill(new, c, q) ELSE error ENDIF}
\end{cases}
\]

\[
\text{add-chem(!fill(new, c1, q1), c2, q2)} = \\
\text{IF } (c1 = c2) \text{ and } (q1 + q2 \leq \text{max-vol}) \text{ THEN} \\
\text{!fill(new, c1, q1 + q2) ELSE error ENDIF}
\]

\[
\text{add-chem(error, c, q)} = \text{error}
\]

The axioms satisfied by alarm? follow directly

\[
\text{alarm?(new)} = \text{false}
\]

\[
\text{alarm?(!fill(new, c, q))} = \text{false}
\]

\[
\text{alarm?(error)} = \text{true}
\]

The complete specification is shown in Fig. 11.9.
SPEC Tank

USING Petrochemical + Real + Boolean

SORTS ne-tank tank err-tank

SUBSORTS ne-tank < tank < err-tank

OPS

 new : -> tank

 add-chem : err-tank chemical real -> err-tank

 !fill : tank chemical real -> ne-tank

 remove : tank real -> tank

empty-tank : tank -> tank

change-pc : tank chemical real -> err-tank

 error : -> err-tank

 alarm? : err-tank -> bool

is-empty? : tank -> bool

is-full? : tank -> bool

 chem : ne-tank -> chemical

 level : tank -> real

max-vol : -> real

FORALL

c, c1, c2 : chemical

q, q1, q2 : real
AXIOMS:

1. `add-chem(new, c, q) = IF q == 0.0 THEN new
 ELSEIF q <= max-vol THEN
 !fill(new, c, q) ELSE error ENDIF`

2. `add-chem(!fill(new, c1, q1), c2, q2) = IF (c1 == c2) and (q1 + q2 <= max-vol) THEN
 !fill(new, c1, q1 + q2) ELSE error ENDIF`

3. `add-chem(error, c, q) = error`

4. `remove(new, q) = new`

5. `remove(!fill(new, c1, q1), q2) = IF q1 > q2 THEN add-chem(new, c1, q1 - q2)
 ELSE new ENDIF`

6. `empty-tank(new) = new`

7. `empty-tank(!fill(new, c, q)) = new`

8. `change-pc(new, c, q) = add-chem(new, c, q)`

9. `change-pc(!fill(new, c1, q1), c2, q2) = add-chem(empty-tank(!fill(new, c1, q1)), c2, q2)`

10. `alarm?(new) = false`

11. `alarm?(!fill(new, c, q)) = false`

12. `alarm?(error) = true`

13. `is-empty?(new) = true`

14. `is-empty(?(!fill(new, c, q)) = false`

15. `is-full?(new) = false`

16. `is-full(?(!fill(new, c, q)) = (q == max-vol)`

17. `chem(!fill(new, c, q)) = c`

18. `level(new) = 0.0`

19. `level(!fill(new, c, q)) = q`

ENDSPEC

Figure 11.9: Algebraic specification of a small petrochemical control system – version 2
Chapter 12

Canonical Terms and Proof Obligations

12.1 Introduction

This chapter considers the proof obligations that should be discharged both prior to and as part of the process of validating an algebraic specification.

For VDM specifications, we have seen that the proof obligations concern satisfiability whereby for each operation, we must prove that an output state exists given that the operation’s pre-conditions have been met and that all output states are valid. In the case of the algebraic approach, discharging the relevant proof obligations often involves structural induction and this proof technique is examined. We also look more formally at the notions of completeness and consistency in the context of algebraic specification.

An important aspect of proof obligations for algebraic specifications concerns the verification that an identified collection of terms, drawn from the term algebra, constitutes a set of canonical terms (forms) for a specification. These ideas were introduced in chapter 10 along with the quotient term and canonical term algebras. We recall that the canonical term algebra is important because it is an initial model and can often be generated directly from a subset of the constructor operations (that is from the reduced expressions which involve compositions of the atomic constructors). Initial models are widely used for algebraic specifications because they provide precisely what the specification requires and nothing more. Initial models have no superfluous elements (no junk) and do not enforce two values of the data type to be equal which were meant to be distinct (no confusion). They therefore provide faithful interpretations of a specification and so are often used as the standard representational model of a specification.

Discharging the proof obligations for algebraic specifications involves structural induction and we should say at the outset that although the method of proof follows a well-trodden path, proofs for even small specifications can involve lengthy manipulations. The aim of this chapter therefore is to inform the reader how we would expect them to use these formal ideas and techniques. We would not expect the reader to prove everything formally, but to understand the principles involved in discharging the proof obligations. This should give a better understanding of the nature of the algebraic approach itself.
The purpose of this chapter therefore is to give the reader an insight into this more formal aspect of algebraic specification. We discuss also the attributes that operations may possess such as associativity and commutativity and show that such attributes can often be proved as a direct consequence of the axioms. The proof of such properties often provides a valuable check on the validity of the specification with respect to its proposed interpretation. The chapter concludes with a summary of the main results.

12.2 Proof Obligation: Canonical Terms (Forms)

We recall from chapter 10 that given a specification S, then an algebra whose carrier set contains the entire set of ground (variable-free) terms generated using the signature of S is the term algebra of S. The effect of the axioms of S is to partition these terms into a number of different equivalence classes with each equivalence class containing all those terms which the axioms identify as “equal”. The resulting algebra whose carrier set consists of these equivalence classes is the quotient term algebra, which is an initial model. For the quotient term algebra, each element of its carrier set is an equivalence class of terms.

If we now isolate one term from each of the different equivalence classes, (that is choose one member from each class as a “representative” of that class), then the collection of all such terms constitutes a set of canonical terms (forms). The algebra whose carrier set is made up from this collection of canonical terms is called the canonical term algebra, which is isomorphic to the quotient term algebra and is therefore also an initial model. These ideas are illustrated in Fig. 12.1.

The importance of canonical forms is that every term which can be generated using the signature is equivalent to one of these canonical forms. The collection of canonical terms therefore provides a representation of all the distinct symbolic values of the sort. These observations lead us directly to identify the following proof obligation for an algebraic specification:

- The assertion that a set of terms constitutes a set of canonical forms must be proved by demonstrating that every (ground) term generated from the signature is equivalent to one and only one of the canonical forms.

To prove this result, we use structural induction over the axioms.

12.2.1 Canonical Terms and Reduced Expressions

From the very outset, we have built up specifications by supplying a collection of constructor (and accessor) operations and then dividing the constructor operations into two groups, namely atomic and non-atomic constructors. We can now let the cat out of the bag - the collection of atomic constructors provides us immediately with a means of generating a set of canonical forms. The collection of reduced terms, that is terms involving legal compositions of the atomic constructors, provides us with a set of canonical forms.
Carrier set of the Term Algebra

<table>
<thead>
<tr>
<th>x x x</th>
<th>x x x</th>
<th>x x</th>
<th>x x</th>
<th>x x</th>
<th>Contains all the ground terms which can be generated using the signature of the specification</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>/ / /</th>
<th>The effect of the axioms is to "factorise" all the terms into a number of equivalence classes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>Two terms from the term algebra belong to the same equivalence class if they can be shown to be equal using the axioms. Every member of the term algebra will belong to one equivalence class.</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quotient Term Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two terms from the term algebra belong to the same equivalence class if they can be shown to be equal using the axioms. Every member of the term algebra will belong to one equivalence class.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canonical Term Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the canonical term algebra, the carrier set consists of one member from each of the equivalence classes. Such a collection of terms constitutes a set of canonical forms. The cardinality of this set gives the number of distinct values of the abstract data type.</td>
</tr>
</tbody>
</table>

Figure 12.1: The relation between the term, quotient term and canonical term algebras
For example, with the stack, we have asserted that a set of canonical terms is given by the set of terms

\[\{ \text{init, push(init, e1), push(push(init, e1), e2), ...} \]

for all \(e1, e2, \ldots \in \text{nat} \). Clearly this assertion should be proved and will be demonstrated shortly.

We must emphasise that with the examples we have looked at, it has been our intuitive understanding of the required properties of an abstract data type which has helped us to identify a set of atomic constructors. It is this knowledge which provides the vital bridge between our perceived model of the data type and the identification of an appropriate set of atomic constructors which realises this model. Having identified the atomic constructors, we can then systematically generate a set of canonical forms and so construct an abstract implementation in the form of an initial canonical term algebra. A rather useful analogy here is to think of atomic constructors as operations which create values of the abstract data type while non-atomic constructors describe how these values can be transformed to other values of the type (that is describes their functional behaviour).

Of course, intuition can lead us astray by producing, for example, a set of reduced terms (involving what is perceived to be a set of atomic constructors) which are not canonical forms. We will explore this aspect shortly by considering the specification of a set data type. These issues emphasise the importance of recognising the appropriate proof obligation and knowing how to discharge it.

12.3 Proof Obligations: Consistency and Completeness

Two fundamental concepts associated with any formal theory concern the \textit{consistency} and \textit{completeness} of the theory. We need to look briefly at these ideas in the context of algebraic specifications as \textit{theory presentations}.

12.3.1 Consistency

Consistency requires that at least one model of the specification can be found. In other words, no contradictory theorems can be derived. For algebraic specifications, consistency presents no problem since one model can always be constructed from the specification, namely the quotient term algebra.

12.3.2 Completeness

Completeness, in the context of algebraic specification, demands that all the required properties of our data type can be deduced from the axioms of the presentation, so that any model of the theory will satisfy those properties. Completeness therefore demands
that axioms are included which allow terms, which are intended to be equivalent, to be identified as such.

The proof obligation for completeness is therefore

- Every expression that can be made up from the constructors is equivalent to one in the proposed set of canonical forms.

which essentially re-states our first proof obligation above.

12.3.3 Sufficient Completeness

In the context of algebraic specifications, completeness therefore requires that terms which are “intended” to be equivalent should be recognised as such. In other words, the axioms of a specification need to state what we expect of the behaviour of an abstract data type and we say that the specification is sufficiently complete if these expectations are met. It was [Guttag 77] who introduced the qualifier “sufficiently” in order to emphasise this “expectational” aspect of completeness. It is worth expanding on this concept a little.

When a new data type is being specified which uses existing specifications as a basis (in the sense of importing sorts and/or operations and/or values from those existing data types), the results of all well-formed expressions which can be constructed using the operations of the new type (constructor and accessor), should belong either to the new type or be reducible by the axioms (of the new specification) to values of the existing types. A specification which has this property is said to be sufficiently complete. Identification of a set of canonical forms for a data type and the construction of axioms showing how each accessor and non-atomic constructor acts upon the atomic constructors provides a systematic and adequate procedure for constructing sufficiently complete theories.

12.3.4 Extensibility (Conservative Extension)

As we saw in the previous chapters, theory presentations generally “use” or “import” other existing theories in the sense of including references to separately defined theories. In this manner, hierarchical specifications are built up in bottom-up fashion. For example, the specification DataStore of Fig. 11.13 uses the theories Natural and Boolean and so allows the definition of the operations total and any-values? which return the number of readings in the data-store and whether any readings have been recorded from a named tank respectively. The construction of such hierarchical specifications promotes reusability at the specification level. It follows that in order to reap the benefits of this hierarchical approach, each new level of the specification hierarchy should preserve the structure of the algebras introduced at the previous (lower) levels. The desirability of promoting reusability will therefore impose constraints at each level of the hierarchy.

A specification which “extends” an existing specification in this way should therefore preserve the properties of the original specification and so it should be proved that the operations of the new specification introduce no junk and no confusion.
12.3.5 Validating an Algebraic Specification

We made the point earlier that the axioms of a specification need to state what we expect of the behaviour of an abstract data type. It follows that as part of the process of validating an algebraic specification, we should ensure that the axiomatisation has no undesired consequences such as identifying terms to be equivalent which were meant to be different. Hence, as part of the process of validating a specification, we need to recognise the following proof obligation for consistency.

- No two terms in the designated set of canonical forms will be forced to be equivalent as a consequence of the axioms.

12.3.6 Termination

One further issue which should be considered concerns the termination of a term rewriting system. For example, the pair of rewrite rules

\[
\begin{align*}
 \text{john} & \rightarrow \text{lee} \\
 \text{lee} & \rightarrow \text{john}
\end{align*}
\]

will result in an infinite sequence of rewrites. In chapter 10, we observed that a set of rewrite rules is \textit{finitely convergent} if it is both

1. \textit{Church-Rosser} – the order of applying the rules does not affect the result
2. \textit{Noetherian} – the set of rewrite rules is terminating

Such a set of rewrite rules is also called \textit{canonical}.

In general, it is undecidable whether an \textit{arbitrary} set of rewrite rules is terminating although methods have been devised for proving termination for certain types of sets of rewrite rules. The methods involve mathematical ideas which are beyond the scope of this book and the interested reader is referred to [Huet and Oppen 80] for a comprehensive survey of term rewriting systems.

Suffice it to say that in the case of typical term rewriting systems for abstract data types, it is possible to produce rules which are both Church-Rosser and terminating. In practice, following the approach we have adopted in this book, it is comparatively straightforward to ensure that a set of axioms will be finitely convergent. On this point, it is worth repeating an observation made by [Goguen and Winkler 88], who developed the executable algebraic specification language OBJ3. They remarked that they had run thousands of reductions (of terms) on hundreds of examples (of specifications) and had hardly ever encountered problems with canonicity (finite convergence).
12.4 Specification of a Set

Before embarking on the formal aspects of structural induction and its application to discharging proof obligations, we examine the specification of a set data type. We have seen that identification of a set of atomic constructors leads us immediately to a set of canonical forms composed from those atomic constructors. However, as we remarked at the time, intuition might lead us astray as we now show with the following specification: Funny-Set for a “set” of natural numbers. This example demonstrates that having identified (what is apparently) a set of atomic constructors, the corresponding set of reduced expressions composed from these atomic constructors does not constitute a set of canonical forms.

12.4.1 Requirement

To keep the discussion as simple as possible, we include just four operations:

- **empty**: a nullary operation which returns an empty set \{\} (\emptyset)
- **add**: an operation which adds a natural number to an existing set to produce a new set
- **delete**: an operation which removes a specified natural number from a set to produce a new set
- **is-in?**: an operation which returns true if a specified natural number is a member of a set and false otherwise

Of course, a more useful specification would include the operations of set union (\cup) and intersection (\cap) and this is developed in the additional problems at the end of the chapter.

The two atomic constructors for this abstract data type are empty and add. The operation delete is non-atomic, a result we will formally prove later while the operation is-in? is an accessor so that a sufficiently complete specification is given by version-1 in Fig. 12.2. The reduced expressions of this specification are terms of the form

\[
\text{add}(\ldots \text{add}(\text{empty},e_1),e_2) \ldots ,e_n)
\]

where \(e_1, e_2, \ldots, e_n \in \text{nat}\). Using standard mathematical notation, this reduced form corresponds to the set with \(n\) elements \(\{e_1,e_2,\ldots,e_n\}\).

Consider now the two reduced expressions \(s_1\) and \(s_2\) where

\[
\begin{align*}
 s_1 &= \text{add}(\text{add}(\text{empty},3),2) \\
 s_2 &= \text{add}(\text{add}(\text{empty},2),3)
\end{align*}
\]

Using the axioms of Fig. 12.2, it is not possible to derive the theorem \(s_1 = s_2\) from the specification because there are no axioms whose left-hand sides have \text{add} as their left-most outermost operation. It follows that \(s_1\) and \(s_2\) denote different terms.
SPEC Funny-Set

USING Natural + Boolean

SORT set

OPS

 empty : -> set
 add : set nat -> set
 delete : set nat -> set
 is-in? : set nat -> bool

FORALL

 s : set
 n1, n2 : nat

AXIOMS:

(1) is-in?(empty, n1) = false

(2) is-in?(add(s, n1), n2) = IF n1 == n2 THEN true

 ELSE is-in?(s, n2) ENDIF

(3) delete(empty, n1) = empty

(4) delete(add(s, n1), n2) = IF n1 == n2 THEN delete(s, n2)

 ELSE add(delete(s, n2), n1) ENDIF

ENDSPEC

Figure 12.2: Algebraic specification of a set - version 1
However, this is incompatible with one of the fundamental properties of sets, namely that the order of insertion of elements into a set is irrelevant (that is the sets {3,2} and {2,3} are identical). This is alarming since expressions which the specification identifies as different are intended to denote the same set. This problem did not arise with the previous specifications such as the stack, queue and binary tree. In those examples, it happens that each reduced form is also a canonical term so that the algebra whose carrier set consists of this collection of reduced expressions will be a canonical term algebra.

In the case of the stack, every reduced expression (such as \texttt{push(push(init,2),3)}) has a unique stack value (a stack with the value 2 on the bottom and 3 on the top) associated with it. Also, every required stack value has a unique reduced term which denotes it. The basic difference between stacks (queues) and sets is that whereas the order in which elements are pushed onto a stack (added to a queue) is important, the order in which elements are added to a set is of no consequence.

A further problem with the above specification is that it does not meet a second fundamental property of sets, namely that inserting an element more than once will leave the value of the set unaltered, that is \(\text{add}(\text{add}(s,n),n) = \text{add}(s,n) \). The equivalence of such terms cannot be shown using the axioms of Fig. 12.2. The specification is therefore not complete since it fails to identify terms which were intended to be equivalent as such. Hence for the specification Funny-Set, the set of reduced expressions does not provide a set of canonical forms.

12.4.2 Additional Axioms

The basic problem with our specification Set is that while it defines an abstract data type, it does not adequately capture the entire mathematical concept of a “set”. The axiomatisation is sufficiently complete as defined earlier but extra axioms are needed which embrace the two additional properties of sets described above.

The property that the order of insertion of elements into a set is not important is expressed by the axiom

\[
\text{add}(\text{add}(s, n1), n2) = \text{add}(\text{add}(s, n2), n1)
\]

while the requirement that an element may be added to a set more than once without altering its value is expressed by

\[
\text{add}(\text{add}(s, n), n) = \text{add}(s, n)
\]

where \(s \in \text{set} \) and \(n, n1, n2 \in \text{nat} \). The above axioms can be combined into one and the revised specification, with the additional axiom (5) is shown in Fig. 12.3 (version-2). It is important to observe that these additional axioms present problems when treated as rewrite rules. The introduction of axiom (5) results in a non-finitely convergent set of rewrite rules since it results in a non-terminating sequence of rewrites. Inclusion of axiom (5) leads to an infinite loop of rewrites and so cannot appear in any prototype of the specification which uses term rewriting for its operational semantics.
SPEC Set

USING Natural + Boolean

SORT set

OPS

empty : -> set

add : set nat -> set

delete : set nat -> set

is-in? : set nat -> bool

FORALL

s : set

n1, n2 : nat

AXIOMS:

(1) is-in?(empty, n1) = false

(2) is-in?(add(s, n1), n2) = IF n1 == n2 THEN true

ELSE is-in?(s, n2) ENDIF

(3) delete(empty, n1) = empty

(4) delete(add(s, n1), n2) = IF n1 == n2 THEN delete(s, n2)

ELSE add(delete(s, n2), n1) ENDIF

(5) add(add(s, n1), n2) = IF n1 == n2 THEN add(s, n1)

ELSE add(add(s, n2), n1) ENDIF

ENDSPEC

Figure 12.3: Algebraic specification of a set - version 2
Axiom (5) states that the set denoted by a reduced expression is independent of the order in which different elements are inserted. We now have the situation that there are many equivalent reduced expressions which correspond to a single set value - for example, the set \{e_1, e_2, \ldots, e_n\} (with \(n\) distinct values) will have \(n!\) equivalent reduced expressions which denote the set. We therefore have a one-to-one correspondence between an equivalence class of reduced expressions and the set value it denotes. Hence two reduced set expressions \(s_1, s_2 \in \text{set}\) will denote the same set value if they belong to the same equivalence class of reduced expressions.

We can still derive a set of canonical terms by selecting one member of each equivalence class of reduced expressions as a “standard” canonical term. A suitable set of canonical terms for Set would be terms involving empty and add in which the elements are inserted using some ordering relation on the natural numbers and with no duplicates.

A simple example should help focus these ideas. Given the set \{1,2,3\} the corresponding equivalence class of reduced expressions includes the six members

\[
\begin{align*}
\text{add}(\text{add}(\text{add}(\text{empty},1),2),3), & \quad \text{add}(\text{add}(\text{add}(\text{empty},1),3),2), \\
\text{add}(\text{add}(\text{add}(\text{empty},2),1),3), & \quad \text{add}(\text{add}(\text{add}(\text{empty},2),3),1), \\
\text{add}(\text{add}(\text{add}(\text{empty},3),1),2), & \quad \text{add}(\text{add}(\text{add}(\text{empty},3),2),1)
\end{align*}
\]

and a suitable “standard” canonical form is \(\text{add}(\text{add}(\text{add}(\text{empty},1),2),3)\) where we use the ordering relation “\(<\)” whereby the elements are inserted in ascending order. Each member belonging to the carrier set of the canonical term algebra would then be a reduced expression involving only the atomic constructors add and empty in which elements are inserted in order and with duplicates removed. Later, we will use structural induction to prove that such a collection of reduced expressions, with the elements inserted in ascending order, does indeed constitute a set of canonical forms.

12.4.3 Use of Hidden Operations

We could have followed the example of the specification Ordered-tree of chapter 9 and introduce the exportable constructor \texttt{build} : set nat \rightarrow set which constructs set expressions which conform to the above “standard” form in which elements are inserted in ascending order with no duplicates. The constructor \texttt{add} would then be hidden so that it could not be used outside the specification Set and users of Set would view empty and \texttt{build} as their atomic constructors. By direct analogy with the specification Ordered-tree, the two additional axioms for \texttt{build} which must be added to Set are

\[
\begin{align*}
\texttt{build}(\text{empty}, n) & = \text{!add}(\text{empty}, n) \\
\texttt{build}(\text{!add}(s, n1), n2) & = \text{IF } n1 == n2 \text{ THEN } \text{!add}(s, n1) \\
& \quad \text{ELSEIF } n1 < n2 \text{ THEN } \text{!add}(\texttt{build}(s, n1), n2) \\
& \quad \text{ELSE } \text{!add}(\texttt{build}(s, n2), n1) \text{ ENDIF}
\end{align*}
\]

Exercise 12.1
Use the above axioms for build to show that

\[
\text{build(build(build(empty, 3), 1), 2) = !add(!add(!add(empty, 1), 2), 3)}
\]

Exercise 12.2

Use axiom (5) of version-2 of Set to show that

\[
\text{add(add(add(add(add(empty,3),1),2),1),4) = add(add(add(add(empty,3),2),4),1)}
\]

12.4.4 Specification of a Bag

It is interesting to observe that if axioms (4) and (5) of Fig. 12.3 were replaced by

\[
\text{delete(add(s,n1),n2) = IF n1 == n2 THEN s ELSE add(delete(s,n2),n1) ENDIF}
\]

and

\[
\text{add(add(s, n1), n2) = add(add(s, n2), n1)}
\]

respectively, then Fig. 12.3 would specify a bag data type. Although, like sets, the order of insertion of elements into a bag is not important, the value of a bag is altered if an existing element is added more than once, for example the bags \([1,2]\) and \([1,1,2]\) are not the same.

12.4.5 Other Atomic Constructors for Set

The specification of a set data type has a number of other interesting features which are worth exploring. Firstly, although we chose empty and add as the atomic constructors, other atomic constructors could be chosen. For example, the three constructors:

- empty : \(\rightarrow\) set
- \{ _ \} : nat \(\rightarrow\) set
- _ \(\cup\) _ : set set \(\rightarrow\) set

form a collection of atomic constructors. The second operation takes a natural number \(n\) and produces the corresponding singleton set \(\{n\}\) while the third operation \(\cup\) is the familiar set union operation \(\cup\). With this collection of atomic constructors, the mathematical set \(\{1,5,3\}\) is represented by the expression \(\{1\} \cup \{5\} \cup \{3\}\). A sufficiently complete specification results by considering the outcomes of the operations is-in? and delete acting on these three atomic constructors. The corresponding axioms are
is-in?(empty, n) = false
is-in?(n1, n2) = IF n1 == n2 THEN true ELSE false ENDIF
is-in?(s1 U s2, n) = is-in?(s1, n) or is-in?(s2, n)
delete(empty, n) = empty
delete(n1, n2) = IF n1 == n2 THEN empty ELSE {n1} ENDIF
delete(s1 U s2, n) = delete(s1, n) U delete(s2, n)

where n, n1 ∈ nat and s, s1, s2 ∈ stack.

On a point of some subtlety, although this may appear at first sight to specify a set, it is unfortunately deficient with regards to the expected mathematical properties of a set in four respects!

1. With reference to set union, the empty set (∅) is an identity element, that is the empty set has the property:
 - empty U s = s and s U empty = s

2. The union operation is commutative:
 - s1 U s2 = s2 U s1

3. The union operation is associative:
 - s1 U (s2 U s3) = (s1 U s2) U s3

4. The union operation is idempotent:
 - s U s = s

These results cannot be derived as a consequence of the six axioms given above and need to be added to the specification. The resulting specification with its eleven axioms is shown in Fig. 12.4 (version-3).

12.5 Structural Induction

Discharging the proof obligations for algebraic specifications usually involves structural induction and there is no doubt that the proofs, even for small specifications, can be cumbersome. The aim of the rest of this chapter therefore is to inform reader how we would expect them to use these formal ideas and techniques. We would not expect them to prove everything formally, but to understand the principles involved in discharging the proof obligations. This should give a better understanding of the nature of the algebraic approach itself.

To keep the discussion as simple as possible, we will use the example of the specification Stack of Fig. 9.7 for an unbounded stack of natural numbers and prove that

(1) the collection of reduced expressions constitutes a set of canonical forms
(2) the specification is sufficiently complete
SPEC Set

USING Natural + Boolean

SORT set

OPS

 empty : -> set
 { _ } : nat -> set
 _ U _ : set set -> set
delete : set nat -> set
 is-in? : set nat -> bool

FORALL

 s, s1, s2, s3 : set
 n, n1, n2 : nat

AXIOMS:

 (1) is-in?(empty, n) = false
 (2) is-in?({n1}, n2) = IF n1 == n2 THEN true ELSE false ENDIF
 (3) is-in?(s1 U s2, n) = is-in?(s1, n) or is-in?(s2, n)
 (4) delete(empty, n) = empty
 (5) delete({n1}, n2) = IF n1 == n2 THEN empty ELSE {n1} ENDIF
 (6) delete(s1 U s2, n) = delete(s1, n) U delete(s2, n)
 (7) empty U s = s
 (8) s U empty = s
 (9) s1 U s2 = s2 U s1
 (10) s1 U (s2 U s3) = (s1 U s2) U s3
 (11) s U s = s

ENDSPEC

Figure 12.4: Algebraic specification of a set - version 3
The formal reasoning used to prove these properties is based on *structural induction*, (also known as *data type induction*) and the arguments used can be applied similarly to prove corresponding properties for the specifications of the previous chapters. Structural induction is an extension of one of the classical proof techniques in mathematics known as *mathematical induction*. This idea was introduced at the end of chapter 2 and used informally in chapter 5 where the technique was applied to prove that an explicit specification satisfied an implicit one. The idea of structural induction is not always immediately accessible so we use the example of the stack to ease the analysis and give the reader confidence with the approach. The analysis scales up for larger examples without too much difficulty apart from the increased notation involved.

Structural induction is similar to the principle of mathematical induction over the integers. In the case of algebraic specifications, in order to prove that some property (predicate) P holds for all values of the data type, we have to demonstrate that the property is valid for all syntactically legal applications of the operations which produce values of the data type.

Suppose the specification of an abstract data type T has ν constructor operations C_1, C_2, \ldots, C_ν where the first m of them are nullary operations (constant values). Furthermore let t_n denote a well-formed term formed from a syntactically legal composition (application) of n of these operations, so that $t_n = C_{i_1} C_{i_2} \ldots C_{i_n}$ where n denotes the length of the expression t_n. For brevity of notation, we have omitted the other arguments of the constructors.

The principle of structural induction can be informally stated as follows:

(a) **if** we can establish the truth of $P(C_i)$ for *all* nullary operations C_i where $1 \leq i \leq m$ and $m \leq \nu$ (the base case)

(b) **and** that the truth of P for the term t_n implies the truth of P for *all* terms $C_j t_n$ where $C_j t_n$ is the term of length $(n + 1)$ obtained by the syntactically legal application of the constructor operation C_j to the term t_n

(c) **then** we can infer the truth of P for all values of the data type.

With structural induction, the base case which must be established is to demonstrate that P is true for all nullary constructor operations.

Basically, since the data values t of an abstract data type T are only modified to other values of type t by constructor operations, they must have attained their values as a result of a finite sequence of applications of these constructors, with the first operation creating a new instance of the data type (init and new in the case of the stack and queue respectively). The truth of some property P about the data type can then be inferred as a direct consequence of induction on the length of the sequence of operation applications.

There is a parallel here with proving “valid” output states in VDM, described in chapter 5. The “property” P in this case is VDM’s data type invariant (dti) and the “constructors” C_i ($1 \leq i \leq \nu$) are VDM operations which change the state.
12.5.1 Canonical Forms for the Stack

From the outset we have asserted that any stack value of sort stack can be “constructed” using just the atomic constructors init and push. In other words the set of reduced expressions

\{init, push(init, e1), push(push(init, e1), e2), \ldots\}

for all e1, e2, \ldots \in \text{nat} constitutes a set of canonical forms. This assertion will now be proved using structural induction.

To start, we define more precisely what we mean by the length of a sequence of operation applications (for this example expressions whose result are of type stack). The length len of a stack expression is defined as the number of occurrences of the constructor names init, push and pop which appear as the left-most outermost part of a stack expression. In other words, the function len is defined recursively as

- \(\text{len (init)} = 1 \)
- \(\text{len (push(s,n))} = 1 + \text{len (s)} \)
- \(\text{len (pop(s))} = 1 + \text{len (s)} \)

where s \in \text{stack} and n \in \text{nat}. Hence, for example

(a) \(\text{len (init)} = 1 \)
(b) \(\text{len (push(push(init,3),6))} = 3 \)
(c) \(\text{len (push(pop(push(init,2)),4))} = 4 \)
(d) \(\text{len (pop(pop(push(push(init,1),2))))} = 5 \)
(e) \(\text{len (push(init,top(push(init,1))))} = 2 \)

Note that in the last example (e), the subterm top(push(init,1)), (which produces a value which belongs to nat), does not contribute to the length of the outer expression – we are concerned only with the length of expressions constructed from compositions of the constructor operations. (In other words, expressions returning values other than of sort stack must be evaluated before len).

We recall that a reduced stack expression is one which is either the empty stack, init or an expression of the form push(s,e) where e \in \text{nat} and s is itself a reduced expression. (That is reduced expressions are terms involving only the atomic constructors of Stack). Hence, a general reduced expression of length n is given by

\[
\text{push(} \ldots \text{ push(push(init,e_i),e_2)} \ldots , e_{n-1})
\]

where e_i \in \text{nat}, (1 \leq i \leq (n-1)).
12.5.2 Proof of Canonical Property for Stack

In order to show that the above collection of reduced forms constitutes a set of canonical forms, we must demonstrate that any stack expression is equivalent to one of the above forms. In other words, we have to prove firstly that

Theorem: any well-formed stack expression $s \in \text{stack}$ is equivalent to one of the forms

(a) init

(b) $\text{push}(s', e)$ where s' is a reduced expression and $e \in \text{nat}$

Base Case: From our stated theorem, the base case $s = \text{init}$, corresponding to an expression of length 1, is true. (For this example, init is the only nullary constructor).

Hypothesis: Suppose that any given stack expression s of length n is equivalent to $\text{push}(s', e)$ or init where s' is itself a reduced expression (of length $(n-1)$). What we must do now is show that the above theorem also holds for all stack expressions obtained from s of length $(n + 1)$, that is for the terms $\text{push}(s, e_n)$ and $\text{pop}(s)$, $(e_n \in \text{nat})$.

Inductive Step: Given that $s \in \text{stack}$ (of length n) is a reduced expression.

(1) Consider the application of push to s. Then $\text{push}(s, e_n) = \text{push}(\text{push}(s', e), e_n)$ and since s' is a reduced expression, $\text{push}(s, e_n)$ is immediately of the form (b).

(2) Consider now the expression $\text{pop}(s)$, defined for all non-empty stack values s. We can use the axioms of Stack to reduce $\text{pop}(s)$. In particular, $\text{pop}(s) = \text{pop}(\text{push}(s', e)) = s'$ by axiom (3) of Fig. 9.7. But from our hypothesis, s' is a reduced expression (of length $n-1$) so the fact that s is a reduced expression implies that $\text{pop}(s)$ is also a reduced expression.

Hence, by induction on the length of the sequence of operation applications, we have proved that all stack expressions can be expressed in terms of just the atomic constructors init and push. What we have shown is that since the stack expression init of length 1 is a reduced expression, so is any term of length 2 obtained by applying a legal constructor operation to init. Hence, $t_2 = \text{push}(\text{init}, e_1)$ is also a reduced expression. (Remember pop is only defined for non-empty stack values).

Continuing the inductive proof, since all stack expressions of length 2 are reduced expressions, so are all stack expressions of length 3 derived from applying legal constructor operations to t_2. Hence the two terms $\text{push}(t_2, e_2)$ and $\text{pop}(t_2)$ are also reduced expressions. Starting from these reduced expressions, any stack expression of length 4 derived from the terms of length 3 by applying the constructors push and pop will also be reduced expressions and so the inductive proof goes on.

To prove that the set of reduced expressions is a canonical set of terms, we must now show that every well-formed stack expression s is equivalent to one and only one of these reduced terms. We have already shown that every well-formed expression s is equivalent to a reduced expression. Furthermore, it *cannot* be shown using the axioms of Stack,
that any one member of the set of reduced expressions is equivalent to another. The only way such a result could be derived was if an axiom were included which related two of the reduced expressions directly, that is an axiom whose outermost left-most operation were an atomic constructor - which is not the case here. Hence each member of the set of reduced expressions is in a different equivalence class.

We have therefore proved that every term is equivalent to a reduced term and that each reduced term is in a different equivalence class. Hence, by definition, the collection of reduced terms constitutes a set of canonical forms.

12.5.3 Proof of the Sufficient Completeness of Stack

The claim that Stack is sufficiently complete can now be proved using the theorem just derived. The proof involves verifying that all possible outcomes of the accessor operations top and is-empty? applied to any stack value s are defined by the axioms.

¡From the theorem just proved, we know that any stack value s is equivalent to a canonical form (that is s reduces either to init or to a composition of push operations). Hence if the axioms show how top and is-empty? act on init and on push(s, n) (where s ∈ stack and n ∈ nat), then the axiomatisation is sufficiently complete. Indeed this is precisely the systematic procedure we have been adopting so far to generate our axioms and its fundamental importance is now clear.

We now prove the corresponding result for the specification Set of Fig. 12.3.

Exercise 12.3

Show formally that remove is a non-atomic constructor operation for the specification Queue and that the collection of reduced expressions involving compositions of the atomic constructors new and add constitutes a set of canonical forms. Deduce that the axiomatisation is sufficiently complete. (If you find this difficult, see the discussion on the specification of a set data type which follows, where structural induction is used to prove corresponding results for that specification).

12.6 Proof of Canonical Property for Set

To prove that the set of terms

\[\{ \text{empty}, \text{add}(\text{empty}, n1), \text{add}(\text{add}(\text{empty}, n1), n2), \ldots \] add(\ldots \text{add}(\text{add}(\text{empty}, n1), n2) \ldots , np), \ldots \} \]

with the ordering \(n1 < n2 < \ldots < np \) constitutes a set of canonical terms we must first demonstrate that each such term belongs to a different equivalence class. This result follows immediately by observing first that no two terms of this set can be proved to be equivalent as a result of the axioms. We must next show that any reduced set expression s is equivalent to one of these canonical forms.
Given a *general* set expression s of the form

$$\text{add(... add(add(empty, v1), v2) ... , vp)}$$

where $v_1, v_2, \ldots, vp \in \text{nat}$ are not necessarily ordered and may include duplicate values, then repeated application of axiom (5) of Fig. 12.3 will “reduce” the above expression to a canonical form in which the values v_1, v_2, \ldots are ordered with all duplicates removed. This result follows since the **ELSE** clause of axiom (5) can be applied to interchange two adjacent values, for example \text{add(add(... , vi), vj)} is equivalent to \text{add(add(... , vj), vi)} and repeating this process, the subterms can be arranged with the v_1, v_2, \ldots, vp values arranged in ascending order. The procedure is nothing more than a *bubble sort* (With a bubble sort, a sequence of values can be placed in ascending or descending order by systematically comparing adjacent pairs of values and interchanging their position if the two values are not in the required order. This procedure is repeated on each new sequence of values until every pair of adjacent values is in the correct order).

Identical values will be brought together which can then be removed using the **THEN** clause of axiom (5). This idea is explained further in the next section when we discuss the use of hidden operations.

We have shown that any *reduced expression* is equivalent to a term in our proposed set of canonical terms. However, to prove that our set of terms is indeed a canonical set, we must now show that *any* set term s can be reduced to one of the proposed canonical forms. Just as with the stack example, we prove this result using structural induction.

Theorem: all well-formed set expressions $s \in \text{set}$ can be reduced to one of the forms

(a) empty

(b) $\text{add(add(... add(add(empty, e1), e2) ... , ek), em)}$

where $e_1 < e_2 < \ldots < e_k < em$.

Base Case: From our stated theorem, the base case when s has the value empty, corresponding to an expression of length 1, is true. (For this example, empty is the only nullary constructor).

Hypothesis: Suppose that any given set expression s of length n can be reduced to

$$\text{add(add(... add(add(empty, e1), e2) ... , ek), em)}$$

where $e_1 < e_2 < \ldots < e_k < em$ (and $m = n-1$).

What we must do now is show that the above theorem also holds for all set expressions obtained from s of length $(n + 1)$, that is for the terms $\text{add}(s, en)$ and $\text{delete}(s, en)$, $(en \in \text{nat})$.

Inductive Step: Given that $s \in \text{set}$ is of length n.
(1) Consider the application of \texttt{add} to \texttt{s}. Then

\[add(s, \texttt{en}) = \]

\[add(add(add(\ldots add(add(\texttt{empty}, e1), e2) \ldots , e\texttt{k}), \texttt{em}), \texttt{en}) \]

We have just seen that applying axiom (5) allows us to interchange adjacent sub-
terms since \texttt{add} (\ldots, \texttt{en}, \texttt{em}) is equivalent to \texttt{add} (\ldots, \texttt{en}, \texttt{em}) so that the subterm involving \texttt{en} will “gravitate” to the left and arrive at its appro-
priate place in the ordering. If the value \texttt{en} is already in the set, it can be removed
using axiom (5) once it has “arrived” and become adjacent to its duplicate. The
resulting expression \texttt{add(s, en)} is therefore also a member of our proposed set of
canonical forms if \texttt{s} is a canonical form.

(2) Consider now the expression \texttt{delete(s, en)}. We can use the axioms of Set to
reduce the term \texttt{delete(s, en)}.

\[delete(s, \texttt{en}) = \]

\[delete(add(add(\ldots add(add(\texttt{empty}, e1), e2) \ldots , e\texttt{k}), \texttt{em}), \texttt{en}) \]

There are three cases to consider.

\textbf{Case [1]}: Suppose first that \texttt{en} = \texttt{em}, then application of axiom (4) gives

\[delete(s, \texttt{en}) = \]

\[delete(add(\ldots add(add(\texttt{empty}, e1), e2) \ldots , e\texttt{k}), \texttt{en}) \]

since the replacement is given by the expression following the \texttt{THEN} clause of axiom
(4). Applying axiom (4) again produces

\[delete(add(\ldots add(add(\texttt{empty}, e1), e2) \ldots , e\texttt{k}), \texttt{en}) = \]

\[add(delete(\ldots add(add(\texttt{empty}, e1), e2), \ldots \texttt{en}), e\texttt{k}) \]

where \texttt{ek} < \texttt{en} (since by hypothesis \texttt{ek} < \texttt{em} and \texttt{em} = \texttt{en}). Axiom (4) is then
repeatedly applied with the \texttt{ELSE} clause on the right-hand side of axiom (4) always
providing the replacement expression. The effect therefore is to move \texttt{delete} “in-
wards” until it eventually arrives at the centre of an equivalent expression given by

\[add(\ldots add(add(delete(\texttt{empty}, \texttt{en}), e1), e2) \ldots , e\texttt{k}) \]

Use of axiom (3) then allows us to replace \texttt{delete(\texttt{empty}, \texttt{en})} by \texttt{empty} so that
we end up with the reduced term

\[add(\ldots add(add(\texttt{empty}, e1), e2) \ldots , e\texttt{k}) \]
with $e_1 < e_2 < \ldots < e_k$. This final equivalent expression is therefore a canonical term. Hence we have shown that if s is a canonical form, then the term $\text{delete}(s, e_n)$ is also a canonical form since it can be expressed in terms of the atomic constructors empty and add with no duplicates and the elements inserted in increasing order.

Case [2]: If the element e_n is a member of the set s but not the largest element, a similar result can be proved. In this case, the subterm involving $\text{delete}(\ldots, e_n)$ will again “move inwards” because the ELSE clause of axiom (4) will apply for the replacement term until we arrive at the equivalent expression

$$\text{add}(\ldots \text{delete}(\text{add}(\ldots, e_n), e_n), \ldots, e_m)$$

where the e_n values “meet up”. This now corresponds to Case [1] and the analysis proceeds as above. We again end up with a canonical term with the element e_n removed.

Case [3]: Finally, if the value e_n is not a member of the original set s, the ELSE clause of axiom (4) will apply for each reduction and eventually the innermost subterm will be $\text{delete}(\text{empty}, e_n)$. Use of axiom (3) then produces the result

$$\text{delete}(s, e_n) = \text{add}(\text{add}(\ldots \text{add}(\text{add}(\text{empty}, e_1), e_2) \ldots, e_k), e_n)$$

with $e_1 < e_2 < \ldots < e_k < e_m$.

In other words, $\text{delete}(s, e_n) = s$ since e_n is not a member of s and since, by hypothesis s is a canonical term, so is $\text{delete}(s, e_n)$.

Use of structural induction over the axioms has therefore shown that any set expression s is equivalent to a reduced expression in which the elements are inserted in increasing order with duplicates removed.

At this point, the reader may be thinking, “but wait a minute, VDM gives us sets for free!” We should point out that this discussion of the set data type has been presented to enable the reader to understand the concepts and principles involved with proof obligation for algebraic specifications. In an application, the reader can start by importing sets into an algebraic specification and then use a similar analysis on the user’s own data type specification.

12.7 Attributes of an Operation

Properties, such as those expressed by axioms (7) to (11) of Fig. 12.4 are attributes which are possessed by the operations of many data types. For example, in the case of the Boolean data type, the operations \land (and) and \lor (or) are both associative and commutative. Furthermore, the value false is an identity element for the operation \lor since for any boolean value b

$$\text{false} \lor b = b \lor \text{false} = b$$

(Similarly, true is an identity element for the operation \land).
Suppose we identify the need for an abstract data type with operation(s) which are required to possess some attribute and proceed to produce an algebraic specification for that abstract data type. Then obviously, that attribute must either appear as an explicit axiom of the specification or be derivable from the axioms using equational logic and structural induction. In the latter case, the attribute is implicit in the axiomatisation. Note that the use of explicit axioms to express such a property may result in axioms whose left-hand sides contain atomic constructors as their outer-most operation.

We will allow the associativity and commutativity attributes of operations to be explicitly declared in the signature, following the range sort of the appropriate operation. For example, following the style of Axis, we will declare that the operation \(u \) is both associative and commutative by means of the statement

\[
\text{OPS}
\]

\[
_ u _ : \text{set set } \rightarrow \text{set } \quad (\text{ASSOC COMM})
\]

The corresponding axioms which state these attributes do not then need to be included in the specification.

12.8 Derivation of Attributes from Axioms

The requirement that the operations in an interpretation of an abstract data type possess attributes such as commutativity or associativity can be expressed directly by means of explicit axioms. What is not always immediately apparent is the fact that such attributes can often be derived from the axioms of a specification using equational inference and structural induction, in which case, the attributes are implicit in the axiomatisation. An illuminating example which exploits these ideas is given in the small specification Natural for natural numbers, first introduced in chapter 10 (Fig. 10.3) and repeated for reference in Fig. 12.5, which consists of the three constructor operations \(\text{zero} \), \(\text{succ} \) and \(\text{add} \) together with the two axioms satisfied by the non-atomic constructor \(\text{add} \). From this “lean” specification, we will prove a number of interesting properties, including the commutativity of the operation \(\text{add} \). The atomic constructors for this specification are \(\text{zero} \) and \(\text{succ} \) and the proof of this result will be looked at in the additional problems at the end of this chapter (Problem 12.11).

Before embarking on such proofs it is important to realise that when developing algebraic specifications, the operations in the intended interpretation may often be expected to possess attributes such as commutativity and associativity so the proof of such properties provides a valuable check on the validity of the specification with respect to that interpretation. For this reason, the reader is strongly encouraged to undertake such proofs.

As we did in chapter 10, we will denote the ground term consisting of \(m \) applications of \(\text{succ} \) to \(\text{zero} \) by \(\text{succ}^m(\text{zero}) \). Before proving that the operation \(\text{add} \) is commutative, we derive the following property which will be used subsequently in the proofs that the operation \(\text{add} \) is commutative and non-atomic.
SPEC Natural

SORT nat

OPS

 zero : -> nat
 succ : nat -> nat
 add : nat nat -> nat

FORALL

 m , n : nat

AXIOMS:

(1) add(zero, n) = n

(2) add(succ(m), n) = succ(add(m, n))

ENDSPEC

Figure 12.5: Small specification of natural numbers
Property 1: \(\text{add}(\text{succ}^m(\text{zero}), n) = \text{succ}^m(n) \)

where \(n \in \text{nat} \). We will prove this result using structural induction (over \(m \)).

Base Case: The base case \((m = 0)\) of Property 1 asserts that \(\text{add}(\text{zero}, n) = n \) which is true from axiom (1).

Hypothesis: Assume now that Property 1 is true for the term \(\text{succ}^m(\text{zero}) \). We then need to show that this result will also hold for the term \(\text{succ}^{m+1}(\text{zero}) \), that is we have to prove that the truth of Property 1 implies the truth of

\[
\text{add}(\text{succ}^{m+1}(\text{zero}), n) = \text{succ}^{m+1}(\text{zero})
\]

Inductive Step: The left-hand side of this last result can be expressed as

\[
\text{add}(\text{succ}(\text{succ}^m(\text{zero})), n) \quad (a)
\]

and use of axiom (2) allows us to transform this expression to

\[
\text{succ}(\text{add}(\text{succ}^m(\text{zero}), n))
\]

From our original hypothesis, the subterm \(\text{add}(\text{succ}^m(\text{zero}), n) \) in the above expression is equal to \(\text{succ}^m(n) \) so that \((a)\) becomes

\[
\text{succ}(\text{succ}^m(n))
\]

which is equal to \(\text{succ}^{m+1}(n) \) as required. We are now ready to prove that the operation \(\text{add} \) is commutative.

Property 2: \(\text{add}(\text{succ}^m(\text{zero}), \text{succ}^n(\text{zero})) = \text{add}(\text{succ}^n(\text{zero}), \text{succ}^m(\text{zero})) \)

We will prove the *commutativity* property of the operation \(\text{add} \) using structural induction over \(n \) although the result could also be proved by induction over \(m \).

Base Case: The base case \((n = 0)\) that must first be proved is

\[
\text{add}(\text{succ}^m(\text{zero}), \text{zero}) = \text{add}(\text{zero}, \text{succ}^m(\text{zero}))
\]

For \(m = 0 \), the above result obviously holds since both terms reduce to the same term \(\text{add}(\text{zero}, \text{zero}) \). For general \(m \), the left-hand side is \(\text{add}(\text{succ}^m(\text{zero}), \text{zero}) \) and from Property 1 with \(n \) replaced by \(\text{zero} \), we have that the left-hand side

\[
\text{add}(\text{succ}^m(\text{zero}), \text{zero})
\]

transforms to

\[
\text{succ}^m(\text{zero})
\]
The right-hand side of the base case, \(\text{add}(\text{zero}, \text{succ}^m(\text{zero})) \), reduces immediately to \(\text{succ}^m(\text{zero}) \) using axiom (1). Both terms therefore reduce to \(\text{succ}^m(\text{zero}) \) and the base case is established.

Hypothesis: Assume Property 2 holds. We must now prove that if Property 2 holds then

\[
\text{add}(\text{succ}^m(\text{zero}), \text{succ}(\text{succ}^n(\text{zero}))) = \text{add}(\text{succ}(\text{succ}^n(\text{zero})), \text{succ}^m(\text{zero}))
\]

(b)

Inductive Step: From Property 1, the left-hand side of (b) is equal to \(\text{succ}^m(\text{succ}(\text{succ}^n(\text{zero}))) \) which is equal to \(\text{succ}^{m+1+n}(\text{zero}) \). The right-hand side of (b) can be transformed using axiom (2) and gives

\[
\text{succ}(\text{add}(\text{succ}^n(\text{zero}), \text{succ}^m(\text{zero})))
\]

We can again use Property 1 to transform this expression to \(\text{succ}(\text{succ}^n(\text{succ}^m(\text{zero}))) \) which reduces to \(\text{succ}^{1+n+m}(\text{zero}) \). Since \(m \) and \(n \) are any non-negative integers, \(m + 1 + n = 1 + n + m \) so that both sides of (b) reduce to the same term \(\text{succ}^{m+n+1}(\text{zero}) \). The commutative property of \(\text{add} \) has therefore been established and has been shown to be implicit in the axioms of the specification.

Exercise 12.4

For both the natural numbers and the integers, confirm that 0 is an identity element for the binary addition operation “+” and that 1 is an identity element for the binary multiplication operation “×”.

12.9 Summary

The principal results are presented in the summaries below.

- During the various phases of software development, the software engineer must produce arguments, using the appropriate mathematical formalism, to demonstrate
 - how the various features of the design relate to the goals set for it in the specification, that is identify the *proof obligations*
 - that these features do indeed achieve these goals - that is discharge the proof obligations

• For algebraic specifications, the following proof obligations need to be discharged

- **Consistency** requires that a model of the specification exists. Since at least one model can always be constructed (the *quotient term algebra*), consistency does not present a problem. However, a presentation may still have undesirable features, like identifying terms to be equivalent which were meant to be distinct. The proof obligation for consistency is then – *no two terms in the intended set of canonical forms should be forced to be equivalent as a consequence of the axioms*.

- The assertion that a collection of terms built up from a subset of constructor operations constitutes a set of canonical forms must be proved by demonstrating that each equivalence class in the carrier set of the quotient term algebra contains exactly one canonical form. The proof of this property uses structural induction over the axioms.

- **Completeness** requires that all the desired properties of our data type can be deduced from the axioms of the presentation. Completeness demands, therefore, that terms which are intended to be equivalent, are identified as such. The proof obligation for completeness is then – *every term is equivalent to one in the proposed set of canonical forms*.

- **Conservative Extension** - specifications which build upon other existing specifications must preserve the properties of those original specifications. In particular, it should be proved that the enlarged specification introduces *no junk* and *no confusion*.

Proofs of these properties often rely on *structural induction*.

• When a new abstract data type is specified which uses as a basis existing specifications of abstract data types, the new specification is *sufficiently complete* if the values of all syntactically legal expressions which can be constructed using the signature of the new type *either* belong to that new type *or* are reducible by the axioms of the new type to values of the existing types.

• A subset of the constructor operations, the atomic constructors, can often be identified which are necessary and sufficient for constructing terms that denote all the required values of the data type. All such values of the data type are then denoted by compositions of these atomic constructors and such compositions of atomic constructors are called *reduced* expressions (terms).

• Canonical terms can often be derived directly from the subset of atomic constructors in that the collection of reduced terms immediately provides a set of canonical terms.

• Operations may possess intrinsic properties such as associativity and associativity. These properties can be stated explicitly using axioms or derived from the set of axioms using equational logic and structural induction. The proof of such properties affords a check on the validity of the specification with regards to its intended interpretation.

Additional Problems - 12.

Problem 12.1
Use mathematical induction to show that the sum of the cubes of the first n natural numbers

$$1^3 + 2^3 + 3^3 + \cdots + (n-1)^3 + n^3$$

is given by $[n(n + 1)/2]^2$.

Problem 12.2

Use structural induction to show that delete is a non-atomic constructor for versions 1 and 2 of the specification for a set given in Fig. 12.2 and Fig. 12.3.

Problem 12.3

Enrich the specification Funny-Set given in Fig. 12.2 (version 1) by including the operations of set union and set intersection. Produce axioms for these two operations and prove formally that these two constructors are non-atomic.

Problem 12.4

Enrich the specification Set given in Fig. 12.4 (version 3) by including an operation for set intersection and derive axioms satisfied by this operation. Demonstrate formally that the intersection operation is a non-atomic constructor.

Problem 12.5

For the specification Boolean given in Fig. 10.3, identify the atomic and non-atomic constructors and formally verify your results.

Problem 12.6

Derive a parameterised specification for a set data type with header $\text{SPEC } \text{Set}(E : \text{Elem})$, which specifies a generic set data type. Base your specification on the unparameterised specification Set of Fig. 12.4.

Problem 12.7

Extend the generic specification of Problem 12.6 to include the set difference operation " - ". What attributes, if any, does the set difference operation possess?

Problem 12.8

Demonstrate formally that the set difference operation introduced in Problem 12.7 is a non-atomic constructor.

Problem 12.9

Given a commutative binary operation opc with domain and range sorts s where $\text{opc} : \ s \ s \rightarrow s$ and $s_1, s_2 \in s$, what problem does the axiom

$$\text{opc}(s_1, s_2) = \text{opc}(s_2, s_1)$$

present for term rewriting systems where the axioms are interpreted as rewrite rules? In particular, is the resulting set of rewrite rules Noetherian?
Problem 12.10

Consider the specification Natural of Fig. 12.5. Extend this specification by including the infix multiplication operation

\[* : \text{nat} \times \text{nat} \rightarrow \text{nat} \]

If \(m \) and \(n \in \text{nat} \)

(a) Complete the axiom whose left-hand side is zero \(* n\).

(b) Complete the axiom whose left-hand side is succ\((m)\) \(* n\). (You will need to make use of the existing operation add).

(c) Use structural induction to show that the operation \(*\) is commutative.

(d) What other attributes does the operation \(*\) possess? Show that these properties can be derived from your axioms.

Problem 12.11

This problem uses structural induction to show that for the specification Natural of Fig. 12.5 the operation add is a non-atomic constructor. The proof makes use of the result Property 1 which we derived earlier. The problem then looks at adapting the specification to provide a formal specification for the integers.

We have to show that the operations zero and succ are atomic constructors. In other words, we have to prove that all ground terms (variable-free terms) will consist of applications of succ to the nullary operation zero. We need to prove that every \(m \in \text{nat} \) can be denoted by either

1. \(\text{zero} \) or
2. \(\text{succ}(\text{succ}(\ldots (\text{zero}) \ldots)) \)

and this will be done using structural induction.

As before, let us express the term consisting of \(n \) applications of succ to zero by succ\(^n\)(zero). We refer to such terms as being reduced or in reduced form.

Base Case: The result obviously holds for the nullary operation zero.

Hypothesis 1: If \(n \in \text{nat} \) is in reduced form, then so is succ\((n)\)

Hypothesis 2: If \(m \) and \(n \in \text{nat} \) are in reduced form, then add\((m,n)\) can be expressed as a reduced form.

Inductive Step: In the case of Hypothesis 1, since \(n \) is in reduced form, it will be of the form succ\(^n\)(zero) for some positive integer \(n' \). It follows that succ\((n)\) is equal to succ(succ\(^n'\)(zero)) which reduces immediately to succ\(^n'+1\)(zero) which is itself a reduced expression. It follows that if \(n \) is in reduced form, so is succ\((n)\).
In the case of Hypothesis 2, since \(m \) and \(n \) are reduced expressions, the term \(\text{add}(m,n) \) can be expressed as

\[
\text{add}(\text{succ}^m(\text{zero}), \text{succ}^n(\text{zero}))
\]

with appropriate non-negative values of \(m' \) and \(n' \). Using Property 1 derived earlier, which states

\[
\text{add}(\text{succ}^m(\text{zero}), n) = \text{succ}^m(n)
\]

we can transform the expression above into

\[
\text{succ}^{m'}(\text{succ}^{n'}(\text{zero}))
\]

which is equal to \(\text{succ}^{m'+n'}(\text{zero}) \). This is again a reduced expression, so we have shown that if \(m \) and \(n \) are reduced expressions, so is \(\text{add}(m,n) \). This completes the proof using structural induction.

(a) Produce a specification for the integers by adapting the specification Natural of Fig. 12.4 to include the unary operation \(\text{pred} : \text{int} \rightarrow \text{int} \) which satisfies the axioms

\[
\text{pred}(\text{succ}(i)) = i \quad ; \quad \text{succ}(\text{pred}(i)) = i
\]

for all \(i \in \text{int} \), where \(\text{int} \) is the introduced sort.

(b) Complete the axiom whose left-hand side is \(\text{add}(\text{pred}(i), j) \).

(c) Show formally that \(\text{pred} \) is a non-atomic constructor.
Bibliography

Chapter 13

Prototyping Algebraic Specifications

13.1 Introduction

In this chapter the prototyping of algebraic specifications is examined. The refinement of an algebraic specification into an implementation is no easy task in general. Therefore instead of describing specification refinement, we will concentrate on specification prototyping. This is entirely consistent with our emphasis on specification construction rather than program design. We will focus our attention on prototyping and in particular on the use of the executable algebraic specification language OBJ3 as a means for producing a correct implementation. We also comment on some of the differences between the two executable specification languages OBJ3 and Axis.

We remind the reader that the operational semantics of algebraic specification languages immediately provides a prototyping mechanism. In our case, the semantics of a SPEC module is prescribed by its axioms which are interpreted operationally as left to right rewrite rules in which instances of left-hand sides of axioms are replaced by their corresponding right-hand sides until a value is obtained which contains no instance of any left-hand side.

The chapter concludes with examples of OBJ3 prototypes for some of the small case studies which were specified in chapter 11, including the estate agent database, the petrochemical plant and the symbol table manager.

13.2 Initial Models and Prototyping

Throughout our treatment of the algebraic approach to specification, we have focused on initial algebra semantics. Initial algebra semantics are important for four main reasons

- The mathematical foundations of initial algebra semantics are well established ([Goguen, Thatcher and Wagner 78] and [Ehrig and Mahr 85]).

341
• The initial algebra approach provides a very appropriate framework for defining
specification correctness criteria such as sufficient completeness.

• Initial models have the “no junk, no confusion” property.

• Specifications with an initial semantics can be directly implemented. Indeed, spec-
ification prototyping is only possible with initial algebra semantics.

We noted in chapter 7 that the main difference between a specification language and a
programming language is that the latter is executable in that it can accept input data
and should output data. Given a specification S and a corresponding implementation P,
then if that implementation is correct, the input-output relationship will always conform
to the specification S.

When an algebraic data type specification is implemented, an appropriate representation
for values of the data type is chosen from the various models of the theory with each
operation of the specification being defined as a function over the chosen representation.
We stressed the importance of initial algebras as models of algebraic specifications in
section 10.10. We reiterate that they provide the “best” model for a given specification
since they contain no junk and no confusion and so provide a faithful interpretation of
the specification. Executability demands also that we confine our attention to initial
models. We therefore concentrate on the quotient term algebra since this initial algebra
provides a “standard model” which is unique (up to isomorphism).

Any implementation must therefore be able to evaluate terms in this model and among
other things should be able to accomplish tasks such as the following

• Given as input any syntactically legal ground term (that is one which conforms to
the signature and so belongs to the term algebra), compute and output its value.
In other words, reduce any given term to a canonical form.

• Given two ground terms (terms containing no variables), determine whether they
denote the same value.

Any algorithm which implements an algebraic specification must therefore be able to
handle term equality, a fundamental concept for algebraic specification. In the case of
our specification language, this means implementing the Boolean valued operation

$_ \ == \ _ : \ s \ s \ \rightarrow \ bool$

where s is any arbitrary sort.

One approach is to use the term algebra in the implementation. Each ground term can
then be represented in the machine by a tree with different sites where rewrite rules may
apply. Each time a rewrite rule is used, the tree will be transformed until a point is
reached where no further rules can be applied. The resulting term will be in a normal
or canonical form. The equivalence of two ground terms is then determined by reducing
each term to normal form and comparing the two resulting forms. If the normal forms
are identical, the two ground terms denote the same value.
We now look briefly at four different approaches for prototyping algebraic specifications. These are the use of executable algebraic specification languages, functional programming languages, Prolog and imperative programming languages.

13.3 Prototyping Specifications Using OBJ3

The first approach and the one of most interest to us is to interpret the specification directly as a term rewriting system where the set of axioms is treated as a collection of one-way rewrite rules. The executable algebraic specification languages Axis and OBJ adopt this stance. Although Axis is itself an executable specification language, it does not support the concept of subsorts and supersorts and it is primarily for this reason that we have chosen OBJ3 as a vehicle for prototyping our specifications. The Axis term rewriting interpreter is also very much slower than its OBJ3 counterpart.

The executable algebraic specification language OBJ has undergone a number of changes since 1976 when Goguen designed the original version of the language. Goguen's aim was to encompass error handling and partial operations, within the framework of the algebraic theory of abstract data types, in a straightforward and uniform manner. The resulting algebraic structures were known as error-algebras and the first implementations, OBJ0 and OBJT were produced by Tardo and Goguen. The former was based on unsorted equational logic while OBJT included a construct for producing parameterised specifications. The next version, OBJ1, based on OBJT, was implemented by Plaisted in 1983 and included the handling of associative/commutative rewrite rules together with a highly interactive environment. In 1985 OBJ2 was developed by Futatsugi and Jouannaud in collaboration with Meseguer and Goguen. Although it used parts of OBJ1, it discarded the error-algebra approach in favour of order-sorted algebras. We can think of an order-sorted algebra as a generalisation of a many-sorted algebra and this concept is looked at briefly at the very end of this chapter. The latest version OBJ3 was developed (as was OBJ2) at the SRI International Computer Science Laboratory in California by Winkler, Meseguer, Goguen, Kirchner and Megrelis ([Goguen and Winkler 88]). The syntax of OBJ3 is similar to OBJ2 but its implementation uses a simpler approach to order-sorted rewriting and OBJ3 provides more powerful parameterisation facilities. The mathematical semantics of OBJ2 and OBJ3 are both based on order-sorted equational logic but their operational semantics are different. OBJ2 used a translation of order-sorted into many-sorted algebra which reduced computation to standard term rewriting whereas OBJ3 uses a more efficient approach through the direct application of order-sorted rewriting. A comprehensive and precise treatment of order-sorted equational logic can be found in [Goguen, Jouannaud and Meseguer 85]. Interestingly, both OBJ2 and OBJ3 can be viewed as implementations of the early specification language Clear.

13.4 Overview of OBJ3

We present a brief account of the main features of OBJ3 and how these features relate to Axis. We do not aim to provide an exhaustive manual of the OBJ3 programming language here - for more details the reader is referred to [Goguen and Winkler 88]. OBJ3 is

1 ©Hewlett-Packard 1988
a wide spectrum programming language which consists of an interpreter and an environment for a powerful functional programming language. It has a rigorous mathematical semantics based on order-sorted equational logic. This logic uses the concept of subsorts which provides a simple, yet mathematically precise way of handling errors and operation overloading.

The rigorous semantics allows specifications to be written as programs which are declarative in style and which mirror the structure of an algebraic specification. This permits OBJ3 to be used not only for validating and implementing algebraic specifications but also as a theorem prover. The three top-level programming structures which support the specification of abstract data types are object modules, theory modules and views.

- **objects**: these encapsulate executable code and correspond to the SPEC modules of Axis. They are delimited by the keywords **obj** and **endo** which correspond to our **SPEC** and **ENDSPEC** respectively.

- **theories**: these define the syntax and semantic properties of modules and module interfaces. They specify properties that may (or may not) be satisfied by another object or theory. They are structurally similar to object modules in that they consist of a collection of sorts, subsorts, operations, variable declarations and axioms (not necessarily all), but they do not enforce an initial interpretation. These correspond to the **PROPS** modules of Axis.

- **views**: these are a concept we discussed in the context of parameterised specifications in chapter 11 (section 11.9). We recall that a **view** is a binding between the sorts and/or operations declared in some theory to sorts and/or operations in some other module together with an assertion that this other module satisfies the properties stated in the theory. Views are delimited by the keywords **view** and **endv**.

As with Axis, both types of module (object and theory) can be parameterised where the parameter types are modules. Modules can also import existing modules which supports multiple inheritance at the module level. Large specifications can then be built up in bottom-up fashion using **module expressions** which consist of unparameterised object modules, instantiated parameterised modules, renamed modules and the sum combinator operator (+), in much the same way as discussed in chapter 11.

With regards to the importing of modules, OBJ3 handles this feature differently from Axis. Whereas Axis identifies two ways that modules can be imported, namely **using** which preserves the initial semantics of the imported module and **including** which guarantees nothing, OBJ3 provides three means for importing modules, **protecting**, extending and using. The meanings of these types of import is connected with the initial semantics of objects as described below. Assume that a module S imports a module T. The importation is

1. **protecting** if and only if S adds no new data values of sorts from T and does not force two distinct values of T to be equal. In other words, S does not introduce junk or confusion. This is equivalent to the **using** construct of Axis.
(2) extending if and only if the axioms of \(S \) do not force two distinct values of \(T \) to be equal. In other words, the enlarged specification preserves the "no confusion" property. This type of importation has no equivalent in Axis.

(3) using if there are no guarantees at all. This is equivalent to our \texttt{INCLUDING} construct.

OBJ3 has a built-in binary infix equality operation \(_ == _ : S S \to \text{Bool} \) for every sort \(S \) and also has a number of built-in pre-defined data types such as \texttt{BOOL}, \texttt{NAT}, \texttt{INT}, \texttt{FLOAT} corresponding to the theory of Boolean values, natural numbers, integers and floating point values respectively. The polymorphic function \texttt{if then else fi} is provided by \texttt{BOOL}.

The axioms of an OBJ3 specification are referred to as \textit{equations} and are prefixed by one of the keywords \texttt{eq} or \texttt{cq} which denotes an \textit{unconditional} or \textit{conditional} axiom respectively. Also OBJ3 supports prefix, postfix, infix and mixfix syntax for operations, in addition to the mathematical parenthesised prefix form. The reader should be aware of the terminology used in OBJ3 for the domain and range sorts of an operation. Given an operation \texttt{op}

\[
\text{op : } s_1 \ s_2 \ldots \ s_n \to s
\]

the domain \(s_1 \times s_2 \times \ldots \times s_n \) is known as the \textit{arity} and the range sort \(s \) is known as the \textit{value sort} or \textit{co-arity}. The pair \((\text{arity}, \text{co-arity})\) is called the \textit{rank} of an operation. OBJ3 employs the convention that an expression is well-formed if and only if it has a unique parse of least sort.

One further distinguishing feature of OBJ3 is its use of \textit{retracts} to parse terms which on first inspection look as though they are not well-formed. When subterms are not of the anticipated sort, they can sometimes be \textit{coerced} to that sort and this is a simple task from a subsort to a superset. For instance, consider the two sorts \texttt{Nat} and \texttt{Rat} corresponding to the sorts of natural numbers and rational numbers respectively. Suppose the addition operation \texttt{_ + _ : Rat Rat \to Rat} is only defined over the rational numbers, then \(1 + 2 \) can be made to conform to the pattern laid down by that signature because 1 and 2 are natural numbers and \texttt{Nat < Rat}, that is the sort of natural numbers is a subsort of the sort of rationals. Put another way, any natural number can be represented as a rational. For example, \(1 + 2 \) can be expressed as \(1/1 + 2/1 \) and so conforms to the signature of the original operation +.

Coercions from supersorts to subsorts are more subtle, however, and one distinguishing feature of OBJ3 is its use of \textit{retracts} to handle such coercions. As an illustration, suppose the factorial function is defined for natural numbers only, and that the parser is presented with the expression \((-6/-3)! \). The parser must treat the subterm \(-6/-3\) (which is strictly a rational) as a natural number since at parse time it cannot ascertain whether \(-6/-3\) will evaluate to a natural number. In OBJ3, such subterms are "given extra breathing space" by having the parser introduce a \textit{retract} which for this example is denoted by the special operation symbol \texttt{r:Rat>Nat}. The effect of a retract is to lower the sort and the retract is then withdrawn if the subterm evaluates to a natural number. In the event of the subterm not evaluating to a natural number, the retract is left behind where it then serves as an instructive error message. For our example, the parser will transform the expression \((-6/-3)! \) into the expression \((\texttt{r:Rat>Nat}(-6/-3))! \) which at run-time
first evaluates to \(r: \text{Rat} > \text{Nat} (2) \) and subsequently \((2)! \) using the built-in equation \(r: \text{Rat} > \text{Nat}(X) = X \) where \(X \) is any variable which belongs to \(\text{Nat} \).

Finally, the period character “." is somewhat special in OBJ3 as it used to terminate operation, variable and axiom declarations among other duties. Care has to be taken when using periods in any other context, for example as an operation symbol, since the interpreter will think a “loose” period within an axiom denotes the end of the axiom. OBJ3 is very tetchy on this point as the authors discovered to their cost when prototyping some of the specifications. Expeditious use of brackets is the order of the day in these situations!

We conclude this summary with a specimen OBJ3 program for a parameterised queue module. The requirement theory is \text{ELEM} which simply requires the existence of a sort and corresponds exactly to our \text{PROPS} module \text{Elem} given in Fig. 11.14. The parameterised specification is then instantiated to produce a specification for a queue of natural numbers. The resulting program is shown in Fig. 13.1. Observe that we have chosen to write the accessor operations in prefix form while the constructors are expressed in parenthesised prefix format. This is done merely to display the features of OBJ3 and is no requirement of OBJ3 itself. Note also that comments in OBJ3 are introduced by ***> or ***. The former print during execution while the latter do not. We can then instantiate the formal parameter E with the (built-in) module \text{NAT} to produce a specification of a queue of natural numbers. We rename the sorts and the accessor operations to reflect this application and the resulting specification is shown below.

\[
\text{obj QUEUE-QF-NAT is}
\]

\[
\begin{align*}
\text{protecting QUEUE[NAT] } & * \\
(\text{sort Queue to QueueNat} , \\
\text{sort NeQueue to NeQueueNat} , \\
\text{op front } & \text{ to first } , \\
\text{op is-empty? } & \text{ to empty-queue? }) .
\end{align*}
\]

\[
\text{endo}
\]

We have used a default view in the instantiation \text{QUEUE[NAT]} which is equivalent to the explicitly stated form

\[
\text{QUEUE[view to NAT is sort Element to Nat . endv]}
\]

where \text{Nat} is the sort corresponding to the built-in module \text{NAT}.

Given an object (specification module) together with an expression \(<\text{Expr}>\), (the input to the prototype program) the expression can be evaluated (that is reduced by applying an appropriate sequence of axioms in the form of rewrite rules) by using the command

\[
\text{reduce } <\text{Expr}> .
\]
th ELEM is

sort Element.

endth

***=======================================

obj QUEUE[E :: ELEM] is

sorts Queue NeQueue .
protecting BOOL .
subsort NeQueue < Queue .
op new : Queue Element -> NeQueue .
op add : Queue Element -> NeQueue .
op remove : NeQueue -> Queue .
op front_ : NeQueue -> Element .
op is-empty?_ : Queue -> Bool .
var q : Queue .
var e : Element .
eq front add(q,e) = if is-empty? q then e
 else front q fi .
eq is-empty? new = true .
eq is-empty? add(q,e) = false .
eq remove(add(q,e)) = if is-empty? q then new
 else add(remove(q),e) fi .
endo

***=======================================

Figure 13.1: Specification of a generic queue using OBJ3
and such an expression is evaluated with respect to the last module entered into the system. If it is required to reduce an expression with respect to a different module <ModName> say, the appropriate command is

\[
\text{reduce in } <\text{ModName}> : <\text{Expr}> .
\]

As an example, evaluation of the expression

\[
\text{first add(new, 2), 9}
\]

is accomplished by the command

\[
\text{reduce in QUEUE-OF-NAT : first add(new, 2), 9} .
\]

and the corresponding output from this program is

\[
\text{reduce in QUEUE-OF-NAT : first add(new, 2), 9}
\text{rewrites: 6}
\text{result NzNat: 2}
\]

where NzNat denotes the type (sort) of the result, a non-zero natural number.

Similarly, to find the canonical form of the term \text{remove(add(add(new, 1), 4))}, use the command

\[
\text{reduce in QUEUE-OF-NAT : remove(add(new, 1), 4)} .
\]

which produces the result

\[
\text{reduce in QUEUE-OF-NAT : remove(add(new, 1), 4)}
\text{rewrites: 6}
\text{result NeQueueNat: add(new, 4)}
\]

To determine whether two ground terms are equal, say for example the terms \text{remove(add(add(new, 1), 4))} and \text{add(new, 4)}, we use the command

\[
\text{reduce in QUEUE-OF-NAT : remove(add(add(new, 1), 4)) == add(new, 4)} .
\]

which produces the output

\[
\text{reduce in QUEUE-OF-NAT : remove(add(add(new, 1), 4)) == add(new, 4)}
\text{rewrites: 7}
\text{result Bool: true}
\]
13.4.1 Some OBJ3 Prototypes

In Appendix 2 we present OBJ3 prototypes of the case studies developed in chapter 11. All these prototypes were run on a Sun4 workstation using version 2.03 of OBJ3. The examples include the Estate Agent Database (HOUSES-FOR-SALE), the Petrochemical Tank - version 2 (TANK-2), the Petrochemical Plant Monitor (DATASTORE) and the Symbol Table Manager (SYMBOL-TABLE). At the end of each OBJ3 program, the results of some evaluations are presented.

13.5 Prototyping Using Functional Languages

A second approach is to translate the specification directly into a functional programming language such as ML, Miranda and pure Lisp. The affinity between functional and algebraic specification languages has already been discussed in chapter 9. Programs written in a functional language contain functions and type declarations which are defined by pattern-matching rules on the type constructors of their argument sorts. These type constructors in a language such as Miranda essentially correspond to the atomic constructors of an algebraic specification. An example of the functional approach can be seen in the Miranda implementation of the abstract data type Queue given in Fig. 9.6. Indeed, the algebraic specification language OBJ3 is, in essence, a broad spectrum functional programming language based on many-sorted equational logic and this is discussed below.

13.6 Prototyping Algebraic Specifications in Prolog

This approach is included for completeness and also to contrast with the use of Prolog in chapter 7 as a prototyping language for VDM. With this approach, the specification is translated into a logical programming language such as Prolog. For specifications with a set of rewrite rules which is finitely convergent, a simple algorithm can be used for the translation process.

(a) For each nullary operation symbol op, introduce the Prolog rule (clause)

\[
\text{reduce}(\text{op}, \text{R}) :- \\
\text{canonise}(\text{op}, \text{R}).
\]

(b) For each operation symbol op with arity \(n \), \((n \geq 1)\ introduces the Prolog rule

\[
\text{reduce}(\text{op}(\text{X1}, \text{X2}, \ldots, \text{Xn}), \text{R}) :- \\
\text{reduce}(\text{X1}, \text{E1}), \\
\text{reduce}(\text{X2}, \text{E2}), \\
\ldots \ldots \ldots \\
\text{reduce}(\text{Xn}, \text{En}), \\
\text{canonise}(\text{op}(\text{E1}, \text{E2}, \ldots, \text{En}), \text{R}).
\]

(c) For each rewrite rule (axiom) \(L = R \), add the fact
axiom(left, right).

where “left” and “right” represent the translation of the terms \(L \) and \(R \) into Prolog syntax.

(d) Finally, append the following two rules to the Prolog program in the order shown

\[
\text{canonise}(X,Z) :- \\
\text{axiom}(X,Y), \\
\text{reduce}(Y,Z). \\
\text{canonise}(X,X).
\]

For this scheme, a left-most innermost strategy is used to evaluate terms. To reduce (that is to transform to canonical form) any term \(t(a_1, a_2, \ldots, a_n) \) with \(n \) arguments \(a_1, a_2, \ldots, a_n \), its left-most argument \(a_1 \) is first put into canonical (normal) form, then its second argument \(a_2 \) is reduced and so on until \(a_n \) is reduced. If any argument \(a_i \) \((1 \leq i \leq n)\) itself contains subterms, this procedure is recursively applied. Only when the term \(t \) has all its subterms reduced to normal form, will the predicate \text{canonise} use an appropriate axiom to reduce \(t \) itself, unless the term \(t \) is already in normal form. Remember, for a finitely convergent set of rewrite rules, the term will be in normal form if no further axiom can be applied. Hence, if the resulting term cannot be pattern matched with the left-hand side of any axiom, no further reductions are possible and the term will be in a normal form.

In Fig. 13.2, we present a Prolog implementation of the specification \text{Houses-for-sale} which was derived earlier for the case study of the estate agent database (Fig. 11.5). Several points are worth noting about this Prolog program

1. Standard Edinburgh Prolog does not support the modularisation of software so that the “imported” specifications \text{Address}, \text{Mode} and \text{Boolean} with their associated nullary operations \text{adr1}, \text{adr2}, \text{adr3}, \text{adr4}; \text{for.sale}, \text{under.offer}; \text{true} and \text{false} are transformed also using the above algorithm and appear as an integral part of the Prolog program.

2. The axioms for the operations of \text{Houses-for-sale} require case analysis to define their semantics (since the right-hand sides of the axioms contain \text{IF - THEN - ELSE -}). We can easily recast such axioms into Prolog by employing \textit{pattern matching} with appropriate alternative forms for each axiom (rule).

3. The variable \(R \) which appears as the second slot in the predicates \text{reduce} and \text{canonise} is essentially a “place-holder” for the result of the reduction of the term held in the first slot. Looking at the two rules for \text{canonise}, if no axiom can be applied to reduce a term, that term must be a normal form. In that case the first rule cannot be applied and \text{canonise}(X,X) will fire. (This is the base case which terminates the recursion). The outcome of this is simply to copy the value in the first slot (which is now a normal form) across to the second slot. It is worth emphasising at this point that Prolog does not \textit{evaluate} anything! (Well, unless forced by a side effect).

4. The predicate \text{equivalent}(T1, T2) will be true if the terms \(T1 \) and \(T2 \) are equivalent, that is if they have the same normal form. This predicate essentially corresponds to the equality operation \(== \) which is required for every sort.
The Prolog program of Fig. 13.2 will terminate for all queries of the form

?- reduce(T,Nf).

and

?- equivalent(Term1,Term2).

In the first case, after termination, Nf is instantiated to the canonical form of the term T where T is any ground term, expressed in Prolog syntax. In the second case, equivalent will succeed if Term1 and Term2 are “equal” under equational inference (using the axioms of Houses-for-sale). Some examples of such queries are

?- reduce(insert(insert(empty,adr1),adr2),Nf1).
?- reduce(make_offer(insert(insert(empty,adr1),adr2),adr1),Nf2).
?- reduce(delete_house(insert(insert(empty,adr1),adr2),adr1),Nf3).
?- equivalent(insert(empty,adr1),add_house(empty,adr1,for_sale)) .

All four queries succeed, the last one because the two terms

insert(empty,adr1) and add_house(empty,adr1,for_sale)

are “equal” with respect to the axioms of the specification. In the case of the first three queries, the results of the computations are that Nf1, Nf2 and Nf3 are respectively instantiated to

1. add_house(add_house(empty,adr2,for_sale),adr1,for_sale)
2. add_house(add_house(empty,adr2,for_sale),adr1,under_offer)
3. add_house(empty,adr2,for_sale)

The pros and cons of using Prolog to prototype VDM specifications have been discussed in chapter 7 so it suffices here to say that two disadvantages of using Standard Edinburgh Prolog for prototyping algebraic specifications are

- Prolog does not support modularity.

- Prolog is not strongly typed. The main advantage of a strongly typed (“strongly sorted”) programming language is that the compiler can trap meaningless expressions before they are executed. The trouble with Prolog is that it too permissive. For instance, in the above example

reduce(insert(insert(empty,under_offer),true),R)
is a well-formed expression in Prolog, although the arguments of the predicate insert do not conform to the expected sort of the corresponding operation of Houses-for-sale. Moreover, the query

\[- \text{reduce(insert(insert(empty,under_offer),true),R) .}\]

will succeed for this meaningless expression.

Exercise 13.1

Demonstrate that the well-formed Prolog query

\[- \text{reduce(insert(insert(empty,under_offer),true),R) .}\]

succeeds with R instantiated to the (meaningless) expression

\[- \text{add_house(add_house(empty,true,for_sale),under_offer,for_sale)}\]

13.6.1 Use of an Imperative Programming Language

Another means of implementing an algebraic specification is to translate the specification into a general-purpose imperative procedural programming language such as Modula-2 or Ada. A fundamental difficulty here is the complexity of the translation process. While it is true that program modules (units) can be written in Modula-2 and Ada which are strikingly similar in style to algebraic specifications (especially if only function subprograms are used and a "functional" style used consistently throughout - see [Harrison 89]), moving in the opposite way from an algebraic specification to a Modula-2 implementation module or Ada package, though feasible, is a much weightier task in practice ([Priestley 89]).

Priestley developed a system which enables algebraic specifications to be integrated into an Ada programming environment. An algebraic specification is expressed as an Ada package specification and automatically transformed into an executable Ada package which implements the corresponding abstract data type. The resulting Ada package interprets the axioms as left to right rewrite rules. One of the design aims of the system was to use the information hiding capabilities of Ada so that the derived package could be totally interchangeable with a conventional (and correct) hand-coded implementation of the same abstract data type. One key task in the process is to redefine the built-in equality operator = which is available in Ada for every non-limited data type so that it equates two objects of the data type if the terms implementing them are the same. For example, in the case of stacks, the terms

\[- \text{push(init,2) and pop(push(push(init,2),1))}\]

represent the same data value, but the corresponding expression

\[- \text{push(init,2) = pop(push(push(init,2),1))}\]
reduce(true,R) :-
 canonise(true,R).
reduce(false,R) :-
 canonise(false,R).
reduce(adr1,R) :-
 canonise(adr1,R).
reduce(adr2,R) :-
 canonise(adr2,R).
reduce(adr3,R) :-
 canonise(adr3,R).
reduce(adr4,R) :-
 canonise(adr4,R).
reduce(for_sale,R) :-
 canonise(for_sale,R).
reduce(under_offer,R) :-
 canonise(under_offer,R).
reduce(empty,R) :-
 canonise(empty,R).
reduce(insert(D,A),R) :-
 reduce(D,D1),
 reduce(A,A1),
 canonise(insert(D1,A1),R).
reduce(add_house(D,A,M),R) :-
 reduce(D,D1),
 reduce(A,A1),
 reduce(M,M1),
 canonise(add_house(D1,A1,M1),R).
reduce(delete_house(D,A),R) :-
 reduce(D,D1),
 reduce(A,A1),
 canonise(delete_house(D1,A1),R).
reduce(make_offer(D,A),R) :-
 reduce(D,D1),
 reduce(A,A1),
 canonise(make_offer(D1,A1),R).
reduce(is_on_market(D,A),R) :-
 reduce(D,D1),
 reduce(A,A1),
 canonise(is_on_market(D1,A1),R).
reduce(is_under_offer(D,A),R) :-
 reduce(D,D1),
 reduce(A,A1),
 canonise(is_under_offer(D1,A1),R).

axiom(insert(empty,Addr), add_house(empty,Addr,for_sale)) .
axiom(insert(add_house(Hs,Addr1,M),Addr1), add_house(Hs,Addr1,M)) .
axiom(insert(add_house(Hs,Addr1,M),Addr2),
 add_house(insert(Hs,Addr2),Addr1,M)) :-
 Addr1 \== Addr2 .

axiom(delete_house(empty,Addr), empty) .
axiom(delete_house(add_house(Hs,Addr1,M),Addr1), Hs) .
axiom(delete_house(add_house(Hs,Addr1,M),Addr2),
 add_house(delete_house(Hs,Addr2),Addr1,M)) :-
 Addr1 \== Addr2 .

axiom(is_on_market(empty,Addr), false) .
axiom(is_on_market(add_house(Hs,Addr1,M),Addr1), true) .
axiom(is_on_market(add_house(Hs,Addr1,M),Addr2), is_on_market(Hs,Addr2)) :-
 Addr1 \== Addr2 .

axiom(is_under_offer(empty,Addr), false) .
axiom(is_under_offer(add_house(Hs,Addr1,under_offer),Addr1), true) .
axiom(is_under_offer(add_house(Hs,Addr1,for_sale),Addr1), false) .
axiom(is_under_offer(add_house(Hs,Addr1,M),Addr2), is_under_offer(Hs,Addr2)) :-
 Addr1 \== Addr2 .

axiom(make_offer(empty,Addr), empty) .
axiom(make_offer(add_house(Hs,Addr1,for_sale),Addr1),
 add_house(delete_house(Hs,Addr1),Addr1,under_offer)) .
axiom(make_offer(add_house(Hs,Addr1,under_offer),Addr1),
 add_house(Hs,Addr1,under_offer)) .
axiom(make_offer(add_house(Hs,Addr1,M),Addr2),
 add_house(make_offer(Hs,Addr2),Addr1,M)) :-
 Addr1 \== Addr2 .

canonise(X,Z) :-
 axiom(X,Y),
 reduce(Y,Z).

canonise(X,X).

equivalent(T1,T2) :-
 reduce(T1,Nf),
 reduce(T2,Nf).

Figure 13.2: Prolog implementation of the algebraic specification Houses-for-sale
would evaluate to \texttt{false} with the standard definition of \(=\) assuming the stacks are implemented by some dynamic data structure. This is so because \(=\) is based on the identity of the objects used to implement the data type and not on the values represented by its arguments. What has to be done is to export the equality operation \(==\) which equates two objects if the terms which implement them are identical. This can be effected if the operation always compares the corresponding normal forms of each object.

A major problem arises if the correctness of the translation process has to be established entirely formally. To do this, we would have to rely on being able to describe our implementation as an algebra and then prove that this algebra is an initial model of the specification. Formal semantics, in the form of these “implementation algebras” (as Goguen calls them), are rarely available for imperative programming languages so that the correctness of the translation process from specification to implementation is very hard to establish.

13.7 Many-sorted and Order-sorted Algebras

To conclude this chapter, we return to the idea of \textit{subsorts} and examine their mathematical semantics and how the associated concept of an \textit{order-sorted algebra} (OSA) is related to \textit{many-sorted algebra} (MSA). The major difference between OBJ3 and Axis is that OBJ3 is based on OSA while Axis is founded upon MSA. The principal advantage of OSA is that it directly supports the concept of subsorts.

Implementing \textit{strong typing} (or to be pedantic \textit{strong sorting}) using many-sorted logic can be too rigid and is also not always sufficiently flexible when dealing with errors. Our discussion of errors in chapter 9 highlighted the problems that can arise when many-sorted algebras are used to handle exceptions. Subsorts were introduced in order to confront these difficulties and we have seen that the use of subsorts provides a powerful, yet simple way of handling errors. This is the principal reason for using OBJ3 as a prototyping language rather than Axis.

13.7.1 Mathematical Semantics of OSA

\textit{Order-sorted algebra} or OSA was developed to deal with situations where items of one sort are also of another sort, (for example all natural numbers are also integers) and where operations or expressions may have more than one sort. OSA is different from many-sorted algebra or MSA in that a partial ordering exists in the collection of sorts, in the form of an inclusion relation, (denoted by \(<\) in our pseudocode), which is semantically interpreted as subset inclusion among the carrier sets of the intended model. For example, the \textit{subsort} relation \texttt{nat < int} where \texttt{nat} and \texttt{int} are sorts associated with the theory of natural numbers and integers respectively, is interpreted as the \textit{subset} relation \(\mathbb{N} \subseteq \mathbb{Z}\).

The great advantage of OSA is that it overcomes the difficulties arising from exceptions and partial operations.

Order-sorted type structures allow multiple inheritance (in the sense that a given sort may be a subsort of two or more others), operation overloading and error handling to be encompassed within standard equational logic. OSA also allows operations that would
otherwise have to be partial, to be made total which is achieved by the simple device of restricting them to the appropriate subsort.

An OSA is a generalisation of standard MSA which leads directly to the question of which constructions, ideas and results from many-sorted initial algebra carry over and are valid for OSA. In fact it turns out that although OSA differs from MSA in that a partial ordering exists among the carriers, many of the concepts of MSA can be immediately and easily generalised to OSA provided we confine ourselves to what are called regular signatures. This is pleasing since it means that the algorithms and results we have developed to date within the framework of (standard) MSA can be applied without modification.

The requirement that a signature is regular places mild and natural constraints on the form of an order-sorted signature and ensures that any order sorted term will always have a well-defined least sort. In this context, such a term is then said to be well-formed. In essence, regularity requires that overloaded operations must be consistent (that is must agree in their results) when restricted to arguments in the same subsorts.

If we take the example above, with the subsort relation \(\text{nat} < \text{int} \) interpreted as the inclusion \(\mathbf{N} \subseteq \mathbf{Z} \), the operation symbol + can be overloaded, for example

\[
+ : \text{nat} \text{ nat} \rightarrow \text{nat} ; \quad + : \text{int} \text{ int} \rightarrow \text{int}
\]

and regularity requires that the two should agree when restricted to arguments in the same subsorts.

For the interested reader, we present a short and informal account of how order-sorted algebra can be reduced to many-sorted algebra. This sub-section is included just for the mathematically curious.

13.7.2 An Operational Semantics for Order-sorted Algebra

Our aim is to outline, in as simple and direct a way as possible, how order-sorted algebra can be translated into standard many-sorted algebra. The description is not intended to be detailed or exhaustively rigorous but simply to convey the principal ideas and amplifies the discussion in [Goguen, Jouannaud and Meseguer 85].

The difference between order-sorted algebra and standard (many-sorted) algebra is that the former has an inclusion (subset) relation between the carriers which interprets the subsort relation of the corresponding specification. We can model this subsort relation by introducing so-called embedding functions or coercions \(c_{s,s'} \) for each subsort relation \(s < s' \) together with a collection of equations (axioms) satisfied by these embedding functions. To keep the discussion as simple as possible, suppose we have four sorts \(\text{NzNat}, \text{Nat}, \text{Int} \) and \(\text{Bool} \) where \(\text{NzNat} \) is a subsort of \(\text{Nat} \) which is itself a subsort of \(\text{Int} \) corresponding to the sorts of non-zero natural numbers, natural numbers, integers and boolean values respectively). The subsort relations are expressed by

\[
\text{NzNat} < \text{Nat} < \text{Int}
\]
which is a statement of the fact that the sort relation is \textit{transitive}. Each sort relation can be translated into standard equations (axioms) by viewing a sort pair \(s < s' \) as a mapping from \(s \) to \(s' \), that is to say as a (unary) operation (function) \(c_{s,s'} \) with

\[
c_{s,s'} : s \rightarrow s'
\]

We now examine the equations that need to be supplied for each sort pair.

(a) Since, by definition, \(s < s \), that is each sort \(s \) includes itself, we introduce the embedding function \(c_{s,s} : s \rightarrow s \) for each sort \(s \) together with the (conditional) equation

\[
c_{s,s}(x) = x \quad \forall x \in s
\]

So for our small example, we would introduce the four embedding functions \(c_{NzNat,NzNat}, c_{Nat,Nat}, c_{Int,Int}, c_{Bool,Bool} \).

(b) The conditional equation

\[
c_{s,s'}(x) = c_{s',s}(y) \quad \text{implies} \quad x = y \quad \forall x \in s \quad \text{and for all sorts} \quad s \quad \text{of} \quad s'
\]

models the injective property that must hold for embedding functions. This equation ensures that two distinct values which belong to the sort \(s \) are not mapped to the same element in \(s' \). Hence, for our example, this equation ensures that the (distinct) natural numbers 3 and 7, say, are not mapped to the same integer value using the embedding function \(c_{Nat,Int} \).

(c) The transitive property \(s < s' < s'' \), is expressed by the equation

\[
c_{s',s''}(c_{s,s'}(x)) = c_{s,s''}(x) \quad \forall x \in s
\]

which for our example becomes

\[
c_{Nat,Int}(c_{NzNat,Nat}(x)) = c_{NzNat,Int}(x) \quad \forall x \in NzNat
\]

(d) Finally, whenever an operation symbol, \(op \) of arity \(n \) is defined for two sorts \(s \) and \(s' \) with \(s \) a sort of \(s' \) \((s < s') \), that is

\[
op_s : s_1 \ s_2 \ \ldots \ \ s_n \rightarrow s
\]

\[
op_{s'} : s'_1 \ s'_2 \ \ldots \ \ s'_{n'} \rightarrow s'
\]

we must ensure that

\[
op_{s'}(c_{s,s'}(x_1), c_{s,s'}(x_2), \ldots, c_{s,s'}(x_n)) = c_{s,s'}(op_s(x_1, x_2, \ldots, x_n))
\]
where \(x_i \in s_i \). This equation looks rather fearsome, perhaps even more so when we state that this result expresses the fact that all subsort relations must be homomorphisms! If we refer back to chapter 10, and in particular equation (10.1) of section 10.6.1, we see that the above equation defines a homomorphism. Our concrete example should help us understand this result and should also sharpen our understanding of the meaning and importance of homomorphisms.

If we consider the binary infix addition operation \(\text{+} \), defined for both \(\text{Nat} \) and \(\text{Int} \) as our operation \(\text{op} \), where \(\text{Nat} < \text{Int} \), the above “homomorphism” equation becomes

\[
c_{\text{Nat}, \text{Int}}(x) + \text{Int} \cdot c_{\text{Nat}, \text{Int}}(y) = c_{\text{Nat}, \text{Int}}(x + \text{Nat} \cdot y)
\]

where \(+_{\text{Nat}} : \text{Nat} \times \text{Nat} \rightarrow \text{Nat} \) and \(+_{\text{Int}} : \text{Int} \times \text{Int} \rightarrow \text{Int} \) denote the addition operation for the two levels and \(x, y \in \text{Nat} \). We can interpret this result as follows:

Since the sort of natural numbers is a subset of the integers, any two natural numbers \(x \) and \(y \) will also be members of the sort of integers. Furthermore, if we add two natural numbers the result will be a natural number which will also be a member of the sort of integer. Hence, if we add two natural numbers using the “natural +” operation \((+_{\text{Nat}} : \text{Nat} \times \text{Nat} \rightarrow \text{Nat}) \) and then “coerce” the result to an integer using the embedding function \(c_{\text{Nat}, \text{Int}} \) (which is the right-hand side of the above equation), we must get the same result as “coercing” each of the natural numbers \(x \) and \(y \) to an integer first and then adding the integer values using the “integer +” operation \((+_{\text{Int}} : \text{Int} \times \text{Int} \rightarrow \text{Int}) \), (which is the left-hand side of the above equation).

This process defines a translation from order-sorted algebra notation to standard equational notation. Thus if \(E \) is a set of axioms defining a \textit{SPEC} module, we obtain a translation \(E^* \) in which the equations (a) to (d) above have been added. The pleasing result, from our point of view is that an \textit{equivalence} exists between the class of order-sorted algebras satisfying \(E \) and the class of standard algebras satisfying \(E^* \) under which the \textit{initial} algebras of each class correspond. This result is important since it means that we can translate back and forth between \(E \) and \(E^* \) without loss of information.

The particular translation under which the initial algebras of the two classes correspond involves mapping an overloaded operation in the order-sorted algebra (such as the operation \(+ \) in our example) to one of its forms in the standard algebra (that is \(+_{\text{Nat}} \) or \(+_{\text{Int}} \)). The translation is done by selecting the operation with the smallest \textit{range} sort such that the resulting expression is well-formed. This resulting expression is referred to as the \textit{lowest parse}.

13.8 Summary

- Use of the executable algebraic specification language \textit{OBJ3} as a vehicle for \textit{prototyping} specifications is explored and a summary of the main features of OBJ3 presented.

- OBJ3 prototypes of the case study specifications derived in chapter 11 are presented in an appendix.
The issue of implementing algebraic specifications using functional languages, Prolog and imperative languages is examined.

Problem 13.1

Use Prolog to produce prototypes for the algebraic specifications Stack and Queue of Figs. 8.2 and 9.2 respectively.

Problem 13.2

Use Prolog to produce a prototype for the algebraic specification Symbol-Table of Fig. 11.25 (Additional Problem 11.18).
Bibliography

‘Operational Semantics of Order-sorted Algebra’ in Proceedings of the 12th. Interna-
tional Conference on Automata, Languages and Programming, published in

‘An Initial Algebra Approach to the Specification, Correctness and Implementation
of Abstract Data Types’ in Current Trends in Programming Methodology, vol. 3,

International Computer Science Laboratory Report SRI-CSL-88-9, 333 Ravenswood

Chapter 14

Joint Case Study: Development of a Neural Network Specification

14.1 Introduction

This chapter includes an introduction to and a discussion of the requirements of a neural network system. A formal specification of the network will first be developed using the algebraic style and then the VDM style.

14.2 Neural Networks

Our first task is to give an overview of the principal features of neural networks. Our aim is to present a brief yet adequate overview of this aspect of computing and no previous knowledge of this field is assumed.

A neural network is a parallel distributed information processing structure which consists of a collection of simple processing elements which are interlinked by means of signal channels or connections. The processing elements are often referred to as units or neurons and each such element has a local memory which can perform localised information processing. Each neuron in a neural network has a single output connection which spreads (fans) out into as many collateral connections as required. The output signal from a neuron is then carried by each such collateral connection. Neural networks are seen as providing an alternative method for implementing parallel (distributed) information processing systems and their main applications up to now have been in classification and image processing.

14.2.1 A Simple Model of Neurons

One of the earliest models of a neuron was propounded by [McCulloch and Pitts 43] who considered neurons as binary threshold units. In other words, the neuron computes a (linear) weighted sum of its "incoming" input signals and outputs a "0" if this weighted
sum is below a certain threshold or a “one” if the weighted sum is equal to or above that threshold. When the output is 1 (0), the state of the neuron is represented as firing (not firing) respectively. As an example, consider a neuron \(i \) with threshold \(T_i \) and three “incoming” signals \(n_1, n_2, n_3 \) with corresponding weights \(w_{i1}, w_{i2}, w_{i3} \). Neuron \(i \) will then fire with output \(n_i = 1 \) if

\[
 w_{i1}n_1 + w_{i2}n_2 + w_{i3}n_3 \geq T_i
\]

Note that the expression \(w_{i1}n_1 + w_{i2}n_2 + w_{i3}n_3 \) is the weighted sum for this particular neuron and this example is illustrated in Fig. 14.1. The weights for each neuron can be considered as local data stored by that neuron. The individual weight \(w_{ij} \) is a measure of the strength of the connection from neuron \(j \) to neuron \(i \). The weight \(w_{ij} \) can be positive in which case the signal from neuron \(j \) is said to be excitatory, negative in which case the signal is said to be inhibitory or the weight can be zero which indicates there is no connection from neuron \(j \) to neuron \(i \). The weights \(w_{ij} \) for neuron \(i \) can be considered as local data stored by that neuron.

An interconnection from neuron \(j \) to neuron \(i \) is therefore characterised by two properties, its type, that is whether it is excitatory or inhibitory, and the relative influence that neuron \(j \) has on neuron \(i \). Changing the weights \(w_{ij} \) associated with a connection alters the degree of “interconnectedness” and in this manner, the neural network can be made to adapt to new situations. For the McCulloch-Pitts model, the threshold function (also referred to as transfer function) is a step function \(^1\) and variations on this model.

\(^1\)We can express the output \(n_i \) as

\[
n_i = H(w_{i1}n_1 + w_{i2}n_2 + w_{i3}n_3 - T_i)
\]

where \(H(x-a) \) is the Heaviside step function defined by

\[
H(x-a) = \begin{cases}
1 & \text{if } x \geq a \\
0 & \text{otherwise}
\end{cases}
\]
exist which use different transfer functions such as sigmoid functions which output a continuously varying value between 0 and 1. More generally, each individual neuron in a neural network has a transfer function which operates on the incoming input signals to the neuron and generates the corresponding output signal from that neuron. As part of this process, the transfer function may make use of and change the data values (weights) stored in the neuron’s local memory.

The McCulloch-Pitts model of a neuron, although simple, is computationally a potent device in the sense that for appropriately chosen weights \(w_{ij} \), it can accomplish any computation that can be performed by a conventional von Neumann machine (although not necessarily as fast or efficiently as the latter). For more information, see [Rumelhart and McClelland 86].

14.2.2 Applications of Neural Networks

Neural networks are a particular type of Multiple Instruction Multiple Data (MIMD) architecture and two important applications have been their development as “pattern recognition” and “learning” machines.

Of interest here is the problem of how to select the weights \(w_{ij} \) in order to carry out a given computation. One technique involves “teaching” the network to perform the required task by allowing the net to modify the weights in accordance with some learning law. This learning law is often embodied as a subfunction of a neuron’s transfer function. The role of this component is to adapt the input-output behaviour of the neuron’s transfer function by modifying its weights \(w_{ij} \) in response to the training examples (input/output pairs).

The method involves “training” whereby the net is presented with a training set of correct input-output pairs as examples. A “training” input is applied to the network and the output produced by the network is compared with the correct value (“learning with a teacher”). The connection strengths \(w_{ij} \) are then altered to minimize the difference between the actual and correct output values. The main network architecture used for this type of learning is the backpropagation neural network.

14.2.3 Types of Neural Networks

Basically, we can classify neural networks according to their connection geometries and one of the simplest architectures is the layered feed-forward network. Such structures are characterised by a collection of input neurons (“terminals”) whose sole purpose is to supply input signals from the outside world into the rest of the network. Following this can come one or more intermediate layers of neurons and finally an output layer where the output of the computation can be communicated to the outside world. The intermediate layers which have no direct contact with the outside world are called hidden layers. For this class of networks, there are no connections from a neuron to neuron(s) in previous layers, other neurons in the same layer or to neurons more than one layer ahead. An example of such a layered feed-forward network is shown in Fig. 14.2 which
is an example of a two-layered network and we have labelled the individual neurons 1 to 5. (By convention, the layer of input neurons is not counted.) For feed-forward networks, every neuron in a given layer receives inputs from layers below its own (that is from layers nearer the input layer) and sends output to layers above its own (that is to layers nearer the output layer). For such networks, given a set of inputs (the input vector) from the neurons in the input layer, the output vector is computed by a succession of forward passes which compute the intermediate output vectors of each layer in turn using the previously computed signal values in the earlier layers. One of the simplest such networks consists of a single layer and is called a perceptron.

A more general class of network extends the feed-forward topology by allowing the output signal of each neuron in a given layer to be connected not only to the layer ahead but also to that same neuron as an input signal. Such networks are called associative recurrent networks. Backpropagation networks not only have feed-forward connections but each hidden layer also receives an error feedback connection from each of the neurons above it. For neural networks, in general, the only restriction on the type of information processing that can be undertaken by a neuron is that it must be entirely local. In other words, it must depend solely on the values stored in the neuron’s local memory and on the current values of the input signals reaching that neuron through the linked connections.

14.3 Specifying a Neural Network

For the purposes of our discussion, we can define a neural network as a parallel distributed information processing structure which can be represented by a directed graph (digraph) with the following features

- The nodes of the graph are neurons.
- The arcs (links) of the graph are connections and behave as one-directional paths along which signals can travel.
- Apart from “input” neurons, each neuron can be the recipient of an arbitrary number of incoming (“impinging”) connections.
- The set of “input” neurons (or “terminals”) originates in the outside world and the only function of such “input” neurons is to feed input signals into the rest of the network.
- Each neuron has one output connection but the associated signal can branch or “shoot” out into copies and so form multiple output connections. By this means, each neuron can have an arbitrary number of outgoing (“emergent”) connections, but the signals along all these emergent paths will be the same.
- The result of a whole network computation is read off from connections which leave the network.
- Neurons can possess local memory, (at least a threshold) and undertake localised information processing.
Figure 14.2: Example of a two layered feed-forward neural network
• Each neuron has a local processing capability which is prescribed by a transfer or gain function. The only permissible inputs to a neuron's transfer function are the current values of the impinging ("incoming") signals received by the neuron and the values (weights) stored in the neuron's local memory. The only permissible outputs from a neuron's transfer function are that neuron's output signal and values to be stored in the local memory of the neuron.

• Neurons can respond to their input either at discrete time intervals or in a continuous manner. In the discrete case, a neuron's transfer function operates in response to an "activate" input signal which makes the neuron process its current impinging (incoming) signals and local memory values to produce an updated output signal. The outputs are updated either synchronously, usually one layer at a time or updated asynchronously (in random order at random times). The transfer functions of continuous time neurons are always active.

14.4 Algebraic Specification of a Neural Network

We now develop an algebraic specification for a general neural network. The specification will be built up from smaller individual specifications using the theory-building operators and the parameterisation mechanism introduced in Chapter 11. The following assumptions are made:

• We adopt what is essentially the McCulloh-Pitts model of a neuron in which a neuron \(N_i \) with threshold \(T_i \) fires when the weighted sum of its incoming input signals equals or exceeds \(T_i \).

• For simplicity we do not incorporate any learning law.

• We assume synchronous discrete firing.

• The weights, input/output signals and thresholds are discrete values.

We therefore need to specify abstract data types whose values denote discrete values such as input and output signals, thresholds and weights. As stated above we assume the weights, input/output signals and thresholds are discrete values and so assume the availability of appropriate specifications Signal, Weighting and Threshold with corresponding sorts signal, weighting and thresh. We will also need a specification Name with sort name to specify neuron identifiers. (For simple neuron models, the signals, weights and threshold values are all drawn from the set of values -1, 0, 1).

When a neuron fires, we need to "inform" all neurons with connections from \(N_i \) that \(N_i \) has fired. This will be specified using a two-valued data type consisting of the (constant) values on and off. The corresponding specification Activation is shown in Fig. 14.3.

14.5 Structure of a Neural Network

Conceptually, we can think of a neural network as a collection of neurons, with each neuron characterised by a 4-tuple with components
SPEC Activation

SORT activation

OPS

 on : -> activation
 off : -> activation

ENDSPEC

Figure 14.3: The specification Activation

1. a name which identifies the neuron
2. a threshold
3. a collection of impinging ("incoming") neuron connections
4. a collection of emergent ("outgoing") neuron connections

In view of the emphasis on "collections" of data items, it makes sense to utilise a specification for a generic collection of items. Sets and lists immediately spring to mind as possible specification modules which could be utilised for the collection of neuron structures. The principal reason for choosing the list rather than the set to describe the collections of neurons and their individual connections is that the elements in a list have an explicit ordering. When we come to develop axioms which describe the behaviour of the operations for a network, we need to be able to systematically "process" each neuron (or connection) in turn. While this is straightforward with a list structure, the lack of any ordering in the elements of a set can lead to problems of indeterminacy. For this reason, we will use a parameterised list module and the corresponding specification is given in Fig. 14.4 where the atomic constructors are the empty list \(\texttt{[]} \) and the \texttt{cons} operation \(. \). \(. \) which takes an element and a list and inserts the element at the front of the existing list to produce a new list. The operation \(\texttt{app} \) \(\) is the familiar (associative) concatenation operation while the Boolean value operation \texttt{is-in?} \(\) returns true if a specified element is a member of the set and false otherwise.

A neural network can then be specified in terms of a list of neurons, with each neuron specified as a 4-tuple in which the third and fourth slots are themselves lists of neuron connections.

14.5.1 Specification of Incoming and Outgoing Connections

For each connection which transmits a signal to a given neuron, we need three pieces of data about each incoming signal

1. the value of the incoming signal
SPEC List (E : Elem)

USING Boolean

SORTS list ne-list

SUBSORT ne-list < list

OPS

[] : -> list
_ _ : element list -> ne-list
_ app _ : list list -> list [ASSOC]
is-in? _ _ : element list -> bool

FORALL

e, e1, e2 : element
s, s1, s2 : list

AXIOMS for list concatenation:

[] app s = s

(e . s1) app s2 = e . (s1 app s2)

AXIOMS for determining whether an element e1 is present in a list:

is-in? e1 [] = false

is-in? e1 (e2 . s) = IF e1 == e2 THEN true ELSE is-in? e1 s ENDIF

ENDSPEC

Figure 14.4: Parameterised specification of a list
2. whether the source neuron from which the signal emanates “is activated”. We will use the value \(\text{on} \in \text{activation} \) to denote this state.

3. the name of the source neuron

The connections to a given neuron can therefore be specified by a list of 3-tuples (triples). For input neurons (“terminals”) whose only role is to feed information into the network from the outside world, the list of incoming connections will consist of the single 3-tuple

\(< \text{input signal} ; \text{on} ; 0 >\)

where we use a dummy neuron identifier “ 0 ” in the third slot to flag that the incoming signal is from an “input” neuron.

Turning to the connections which feed out from a given neuron, three pieces of information are necessary

1. the value of the output signal

2. the weight with respect to a given destination neuron

3. the name of the destination neuron

For “output” neurons which transmit information to the outside world, the list of outgoing connections will consist of the single 3-tuple

\(< \text{output signal} ; \text{weight} ; 0 >\). In this case the special value “ 0 ” is used to signify that this neuron transmits information to the outside world.

Of immediate use therefore will be a specification for a 3-tuple whose individual components are values drawn from arbitrary sorts. Such a specification for an unconstrained 3-tuple is given by the generic specification \(\text{Triple} \) of Fig. 14.5. The operation \(< \cdot ; \cdot ; \cdot >\) takes three values drawn from arbitrary sorts and returns the corresponding 3-tuple while 1-st, 2-nd and 3-rd are accessor operations which select the first, second and third components of a 3-tuple respectively. A parameterised specification describing a list of unconstrained 3-tuples can be derived immediately from the parameterised specifications List and \(\text{Triple} \) and the resulting specification List-of-Triple is shown in Fig. 14.6.

14.5.2 Specification of a Neuron

As noted earlier, we can specify a neuron as a 4-tuple with the following components

1. an identifier (name) of the neuron.

2. a threshold for the neuron.

3. a list of incoming (“input”) neuron connections from which signals can be received.

4. a list of outgoing (“output”) neurons to which signals can be sent.

so that an individual neuron is specified by the 4-tuple

\(< \text{identifier} ; \text{threshold} ; \)
SPEC Triple(S1 : Elem && S2 : Elem && S3 : Elem)

SORT triple

OPS

<_ ; _ ; _ > : S1’s element S2’s element S3’s element
-> triple

1-st _ : triple -> S1’s element
2-nd _ : triple -> S2’s element
3-rd _ : triple -> S3’s element

FORALL

a : S1’s element
b : S2’s element
c : S3’s element

AXIOMS:

1-st < a ; b ; c > = a
2-nd < a ; b ; c > = b
3-rd < a ; b ; c > = c

ENDSPEC

Figure 14.5: Specification for an unconstrained 3-tuple

SPEC List-of-Triple(F : Elem && M : Elem && E : Elem)

USING List(Triple(F && M && E))

ENDSPEC

Figure 14.6: Specification of a list of unconstrained 3-tuples
SPEC Neuron (S1 : Elem & S2 : Elem & S3 : Elem & S4 : Elem)

SORT neuron

OPS

 < _ ; _ ; _ ; _ > : S1's element S2's element S3's element S4's element -> neuron
 identifier _ : neuron -> S1's element
 threshold _ : neuron -> S2's element
 input _ : neuron -> S3's element
 output _ : neuron -> S4's element

FORALL

 a : S1's element
 b : S2's element
 c : S3's element
 d : S4's element

AXIOMS:

 identifier < a ; b ; c ; d > = a
 threshold < a ; b ; c ; d > = b
 input < a ; b ; c ; d > = c
 output < a ; b ; c ; d > = d

ENDSPEC

Figure 14.7: Specification of a neuron as a parameterised 4-tuple

list of < input value ; on or off ; source neuron > ;

list of < output value ; weight ; destination neuron > ;

We can produce a generic specification for such a 4-tuple immediately by direct analogy with the specification Triple of Fig. 14.5. We denote the four selector operations which access the components of a 4-tuple by identifier, threshold, input and output respectively and the corresponding specification is given in Fig. 14.7. The complete neural network will then be specified as a list of neurons (4-tuples) where the collections of input and output connections are both lists of 3-tuples.

14.5.3 Overview of the Specification for the Network

We begin to see the overall form that our specification Neural-Network will take. First we will have specification modules Info and Outfo corresponding to the list of incoming (impinging) "input" connections and the list of outgoing (emergent) "output" connections respectively. These are obtained immediately by instantiating the generic specification.
List-of-Triple given by Fig. 14.6. The *headers* for the resulting specifications Info and Outfo are

SPEC Info

USING List-of-Triple (Signal && Activation && Name)

WITH list AS info,

 ne-list AS ne-info

where we have renamed the sort list as info and ne-list as ne-info.

SPEC Outfo

USING List-of-Triple (Signal && Weighting && Name)

WITH

 1-st _ : triple -> signal AS value-of_,
 2-nd _ : triple -> weighting AS weight_,
 3-rd _ : triple -> name AS to-neuron _,
 list AS outfo

where the operations of Triple and the sort list of List have been suitably renamed. The specifications Info and Outfo will be developed shortly.

From our description above of the neural network as a list of neurons (4-tuples), we can create a specification Neural-Network by instantiating the parameterised specifications List and Neuron as shown in the specification *header* below.

SPEC Neural-Network

USING List (Neuron (Name && Threshold &&
 Info FIT element AS info &&
 Outfo FIT element AS outfo))

WITH list AS network

where the sort list has been renamed network. Consider the two-layer network shown in Fig. 14.8 which has two "input" neurons (1, 2) and one "output" neuron (5). For this network the thresholds of all five neurons are -1, all neurons are off ("deactivated") apart from the "input" neurons 1 and 2, and the weights of connections \(w_{ij} \) are shown enclosed in curly brackets (for example \{-1\}). For this perceptron, the corresponding term which is a member of the sort network is given by the expression

\[
\langle 1 ; -1 ; < 1 ; on ; 0 > . [] ; \\
\langle 0 ; 1 ; 3 > . < 0 ; -1 ; 4 > . [] > .
\]\n
\[
\langle 2 ; -1 ; < 0 ; on ; 0 > . [] ; \\
\langle 0 ; -1 ; 3 > . < 0 ; 1 ; 4 > . [] > .
\]
< 3 ; -1 ; < 0 ; off ; 1 > . < 0 ; off ; 2 > . [] ;
< 0 ; 1 ; 5 > . [] > .

< 4 ; -1 ; < 0 ; off ; 1 > . < 0 ; off ; 2 > . [] ;
< 0 ; 1 ; 5 > . [] > .

< 5 ; -1 ; < 0 ; off ; 3 > . < 0 ; off ; 4 > . [] ;
< 0 ; 1 ; 0 > . [] > . []

Our next task is to develop the specification by looking at the operations and associated axioms of Neural-Network and its concomitant sub-specifications Info, Outfo and Neuron.

14.6 Specifications for the Component Abstract Data Types

Having established the constituent abstract data types for a neural network, we proceed to examine, in more detail, the required operations and associated axioms for the specifications Outfo, Info, Neuron and Neural-Network.

14.6.1 The Specification "Outfo"

To start, we complete the specification for the list of "outgoing" (emergent) neuron connections from a single neuron. Apart from the selector operations value-of, weight and to-neuron (already introduced) which recover the values corresponding to the output signal, weight and destination neuron respectively for an individual connection, one further operation fire-out is needed

fire-out _ _ : signal outfo -> outfo

Given an arbitrary signal value m (an integer value) and an output list of emergent connections (3-tuples), this operation copies the given value m into the first slot of all 3-tuples in the output list. The axioms satisfied by fire-out are immediately seen to be

fire-out m [] = []
fire-out m < n ; w ; p > . l = < m ; w ; p > . (fire-out m l)

where m, n, ∈ signal, w ∈ weighting, p ∈ name and l ∈ outfo. The second axiom simply says replace the first slot of the leading triple in the list by m and repeat this action for all subsequent triples in the list. This operation will be used later in Neural-Network (in conjunction with others) to specify the behaviour of a firing neuron. The completed specification Outfo is given in Fig. 14.9.

Exercise 14.1

Derive axioms for a Boolean valued operation has-output? : outfo -> bool which returns true if the list of outgoing connections corresponds to an "output" neuron, (that is one which transmits information to the "outside world"), and false otherwise.
Figure 14.8: Example of a two-layer neural network
SPEC Outfo

USING List-of-Triple(Signal && Weighting && Name)

WITH
 1-st _ : triple -> signal AS value-of _,
 2-nd _ : triple -> weighting AS weight _,
 3-rd _ : triple -> name AS to-neuron _,
 list AS outfo

OPS

 fire-out _ _ : signal outfo -> outfo

FORALL

 l : outfo
 m, n : signal
 w : weighting
 p : name

AXIOMS for fire-out:

 fire-out m [] = []
 fire-out m < n ; w ; p > . l = < m ; w ; p > . (fire-out m l)

ENDSPEC

Figure 14.9: The algebraic specification Outfo
The list of impinging (incoming) inputs to an individual neuron consists of triples whose first, second and third slots correspond to the input signal value, the activation state (on or off) and the neuron source respectively. The operations required for the specification Info are

- **all-active?** : ne-info -> bool : an operation which takes a non-empty list of incoming neuron connections and returns `true` if all the incoming connections are activated, that is if the second slots of all the 3-tuples in the list have the value on.

- **sum-active** : info -> signal : an operation which, given a list of input triples for a particular neuron, finds the sum of the incoming input signals coming from activated neurons (that is those 3-tuples whose second slots have the value on).

- **make-passive** : info -> info : an operation which takes a list of incoming neuron connections and replaces each activation value (that is the value in the second slot of each 3-tuple in the list) with the value off.

- **change-weight** : signal name info -> info : an operation which takes a signal value s (the first argument), a neuron identifier id1 (the second argument) and a list of incoming neuron connections and amends the 3-tuple of the named neuron id1 by (i) replacing the input signal of the corresponding 3-tuple (the value in its first slot) by s and (ii) activating that same neuron id1, setting the value of the second slot in that same 3-tuple to on.

(a) **Axioms for all-active?**

The axioms for **all-active?** can be derived immediately by observing that for a list containing a single 3-tuple, **all-active?** will return `true` if its second slot has the value on. In general, **all-active?** returns `true` if the second slot of the 3-tuple at the head of the list has the value on and the second slots of all remaining 3-tuples have the value true. These results are expressed in the axioms

\[
\text{all-active? \ < \ n \ ; \ a \ ; \ m \ > \ . \ [] \ = \ a == \text{on}}
\]

\[
\text{all-active? \ < \ n \ ; \ a \ ; \ m \ > \ . \ l \ = \ a == \text{on} \ \text{and} \ \text{all-active? \ l}}
\]

where \(n \in \text{signal}, m \in \text{name}, l \in \text{info} \) and \(a \in \text{activation} \) (that is takes one of the values on or off).

(b) **Axioms for sum-active**

Although for our chosen model, neurons will only fire if all their “incoming” neuron connections are activated, we have chosen to introduce this less restrictive operation (in which not all the incoming connections have to be activated) to make the specification more general. For our application, we will use the Boolean valued operation **all-active?**
in conjunction with sum-active as a guard to ensure the required behaviour of our “firing” operation is produced.

The operation sum-active finds the sum of the first slots of those 3-tuples in the list whose second slots have the value on. The axioms satisfied by sum-active follow by noting that for an empty list, the sum is zero while for a non-empty list, we need to search through the 3-tuples in the list in turn and if a 3-tuple t is activated (that is 2-nd t == on), then add its signal (1-st t) to the result of repeating the operation on the remaining 3-tuples in the list. These observations lead immediately to the axioms

\[
\text{sum-active} \; [] = \; 0 \\
\text{sum-active} \; t.1 = \begin{cases}
\text{IF} \; \text{2-nd t} = \text{on} \; \text{THEN} \; 1\text{-st t} \; + \; \text{sum-active} \; l \\
\text{ELSE} \; \text{sum-active} \; l \; \text{ENDIF}
\end{cases}
\]

where \(t \in \text{triple} \) and \(l \in \text{info} \).

Exercise 14.2

Produce an axiom for the operation active? : triple -> bool which takes an individual 3-tuple \(<n; a; m>\) where \(n \in \text{signal} \), \(a \in \text{activation} \) and \(m \in \text{name} \) and returns true if its second slot has the value on and false otherwise. Rewrite the right-hand side of the second axiom for sum-active to incorporate the operation active?.

(c) **Axioms for make-passive**

The axioms for make-passive follow by noting that we can set the activation slots of every 3-tuple in the list to off by placing \(\text{off} \) in the second slot of the 3-tuple at the head of the list and then re-applying the operation make-passive to the remaining 3-tuples in the list. The result of applying make-passive to an empty list will result in an empty list. These results are expressed by the axioms

\[
\text{make-passive} \; [] = \; [] \\
\text{make-passive} \; <n; a; m> \; . \; l = \; <n; \text{off}; m> \; . \; \text{make-passive} \; l
\]

where \(n \in \text{signal} \), \(m \in \text{name} \), \(l \in \text{info} \) and \(a \in \text{activation} \).

(d) **Axioms for change-weight**

The operation change-weight will be needed later in the specification Neural-Network when we consider the operation of firing a neuron. When a neuron \(N \) fires, it needs to notify this fact to all those neurons which have \(N \) in their list of incoming 3-tuples. In other words, \(N \) needs to “communicate ahead” to all those neurons to which it is connected, that it has fired. When \(N \) fires it must also copy its output signal into the input value slot of those same neuron connections. We therefore introduce the operation

\[
\text{change-weight} : \; \text{signal} \; \text{name} \; \text{info} \; \rightarrow \; \text{info}
\]
which takes an arbitrary signal value \(s \) (which will later correspond to the appropriate output signal), an arbitrary neuron identifier \(\text{id1} \) (which will later correspond to a firing neuron \(N \)) and an arbitrary list of incoming neuron connections and seeks out that 3-tuple connection which has \(\text{id1} \) as its destination neuron. Having found that 3-tuple, the given value \(s \) is placed in its first slot and that 3-tuple is activated by setting the value of its second slot to \(\text{on} \).

Axioms for \textit{change-weight} follow by noting that the operation achieves its task by scanning through the list of 3-tuples, checking in turn whether the neuron name in the most recently inserted triple matches the given neuron name.

Starting with the list of 3-tuples \(< n ; a ; m > . l \), the 3-tuple at the head of the list is \(< n ; a ; m > \) (where \(n \in \text{signal}, a \in \text{activation}, m \in \text{name} \) and \(l \in \text{info} \)). If \(m \) matches the neuron identifier \(\text{id1} \), the triple is immediately updated to \(< s ; \text{on} ; \text{id1} > \) and appended to the end of the list. This leads directly to the axiom

\[
\text{change-weight } s \text{ id1 } < n ; a ; m > . l = l \text{ app } < s ; \text{on} ; \text{id1} > . []
\]

On the other hand, if the specified neuron identifier does not match \(m \), we re-apply the operation \textit{change-weight} to the tail of the list and append the unaffected 3-tuple \(< n ; a ; m > \) to the end of the list. Finally, we define the outcome of \textit{change-weight} applied to an empty list to be the empty list which leads to the axioms

\[
\text{change-weight } s \text{ id1 } [] = []
\]

\[
\text{change-weight } s \text{ id1 } < n ; a ; m > . l =
\text{IF } \text{id1} = \text{m} \text{ THEN } l \text{ app } < s ; \text{on} ; \text{id1} > . []
\text{ELSE } (\text{change-weight } s \text{ id1 } l) \text{ app } < n ; a ; m > . []
\text{ENDIF}
\]

The specification \text{Info} is now complete and is given in Fig. 14.10.

We can demonstrate the behaviour of the operation \textit{change-weight} by considering the application

\[
\text{change-weight } 1 \ 3 \ <0 ; \text{off} ; 2 > . <0 ; \text{off} ; 3 > . <1 ; \text{on} ; 4 > . []
\]

which results in the “input” list

\[
<1 ; \text{on} ; 4 > . <1 ; \text{on} ; 3 > . <0 ; \text{off} ; 2 > . []
\]

where the second 3-tuple has been amended. Note that this operation changes the order of the 3-tuples in the list.

\textbf{Exercise 14.3}

Verify this result. You should show first that the operation \textit{change-weight} is applied twice with the result

\[
(< 1 ; \text{on} ; 4 > . [] \text{ app } < 1 ; \text{on} ; 3 > . []) \text{ app } (< 0 ; \text{off} ; 2 > . [])
\]
Application of the axioms satisfied by the concatenation operation app from the parameterised list specification in Fig. 14.4 leads to the final result.

Exercise 14.4

Show that if the list of 3-tuples does not contain the given neuron id1, the operation change-weight will not amend any of the 3-tuples in the given list but will reverse the order of the 3-tuples which make up the list.

Exercise 14.5

Derive axioms for the Boolean valued operation is-input? : info → bool which returns true if the list of incoming connections corresponds to an “input” neuron (one which feeds information into the network from the “outside world”) and false otherwise.

14.7 Specification of the Neural Network

As a prelude to the final part of the development of the specification for the neural network, it will be instructive to summarise the component specifications we have constructed to date.

Thus far, we have concentrated on the construction of specification modules which characterise individual neurons and neuron connections. A neuron is specified by a 4-tuple < a ; b ; c ; d > where a identifies the neuron, b denotes its threshold, c denotes the list of impinging (“input”) connections and d denotes the “output” list of emergent connections.

We have developed algebraic specifications which describe the connections emanating from an individual neuron and the connections impinging (entering) an individual neuron. The emergent connections have been described in terms of a list of 3-tuples with each tuple containing the value of the output signal, its weight and the name of a destination neuron. This abstract data type is specified by the module Outfo.

The incoming connections to a particular neuron are specified by the module Info. These connections have also been specified in terms of a list of 3-tuples with each tuple containing the value of the input signal, whether the source neuron is activated or not and the source neuron from where the signal originates.

Hence we have descriptions of isolated neurons, each with their own incoming and outgoing connections so that figuratively speaking, we have the constituent components of a network. Our task now is to “assemble” these isolated components (specifications) and “join” up these connections into a single coherent network and specify operations which describe the behaviour of this network.

14.8 The Operations of “Neural-Network”

 Basically, we can think of a neural network as a parallel system of processors (or neurons as we have chosen to call them) with each neuron containing a simple program which
SPEC Info

USING List-of-Triple(Signal && Activation && Name)

WITH list AS info, ne-list AS ne-info

OPS
 sum-active _ : info -> signal
 all-active? _ : ne-info -> bool
 make-passive _ : info -> info
 change-weight _ _ : signal name info -> info

FORALL
 t : triple
 l : info
 a : activation
 id1, m : name
 n, s : signal

AXIOMS for sum-active:

 sum-active [] = 0

 sum-active t . l = IF 2-nd t == on THEN
 1-st t + sum-active l
 ELSE sum-active l ENDIF

AXIOMS for all-active?:

 all-active? < n ; a ; m > . [] = a == on

 all-active? < n ; a ; m > . l = a == on and all-active? l

AXIOMS for make-passive:

 make-passive [] = []

 make-passive < n ; a ; m > . l =
 < n ; off ; m > . make-passive l

AXIOMS for change-weight:

 change-weight s id1 [] = []

 change-weight s id1 < n ; a ; m > . l =
 IF id1 == m THEN l app < s ; on ; id1 > . []
 ELSE (change-weight s id1 l) app < n ; a ; m > . [] ENDIF

ENDSPEC

Figure 14.10: The algebraic specification Info
computes a weighted sum of the input data from “incoming” neuron connections and then outputs a single value (or “signal”) which is a (nonlinear) function of the weighted sum. This output is then sent on to other neurons which are continually doing the same kind of computation. For the McCulloch-Pitts model of a neuron, the nonlinear function used is a unit step function (threshold function). With this concept of the kind of processing involved in a neural network, we need to supply an operation

\[\text{settle} \rightarrow \text{network} \rightarrow \text{network} \]

which takes a neural network \(n \) and repeatedly

- looks for a neuron whose list of “incoming” 3-tuples are all “activated”, that is the value of the second slot of all the 3-tuples in its list of incoming signals has the value on. If there are no such neurons, then \(\text{settle} \) is to return an unaltered network \(n \).

- if there is such an “activated” neuron and the weighted sum of its input signals is equal to or exceeds the threshold,

 (a) fire the neuron, then
 (b) spread its output and
 (c) de-activate the neuron

- if there is such an activated neuron but the weighted sum of the incoming “input” signals is less than the threshold of that neuron, then “de-activate” that neuron (that is set the value of the second slot of all the 3-tuples in its list of incoming signals to off).

The operation \(\text{settle} \) is required to perform the above task until there are no neurons in the network whose list of “incoming” 3-tuples are all “activated”. Clearly, we need a boolean-valued operation

\[\text{all-settled?} \rightarrow \text{network} \rightarrow \text{bool} \]

which takes a neural network (that is a list of neurons) and returns false if any neuron in the network has all its inputs “activated”. When this operation returns true, no further processing by the network can take place.

Our immediate task is to define the operations fire, spread and sleep, corresponding to (a), (b) and (c) above and to this end, we first introduce two operations each of which takes a neuron as input and returns a neuron as a result. The first operation, sleep, “deactivates” a neuron while the second, fire, “fires” a neuron.

14.8.1 The Operation “sleep”

The operation \(\text{sleep} \rightarrow \text{neuron} \rightarrow \text{neuron} \) takes a neuron and replaces the value in the activation slot of every 3-tuple in the neuron’s list of “input” connections by the value off. This is achieved by simply applying the operation \(\text{make-passive of Info} \) to
the third slot of the 4-tuple specifying the neuron. Hence the axiom for sleep is

\[
\text{sleep} < a ; b ; c ; d > = < a ; b ; \text{make-passive} c ; d >
\]

where \(a \in \text{name} \), \(b \in \text{thresh} \), \(c \in \text{info} \) and \(d \in \text{outfo} \).

14.8.2 The Operation “fire”

The operation \(\text{fire} : \text{neuron} \rightarrow \text{neuron} \) takes a neuron and copies the sum of its \emph{activated} incoming signals across into the first slot (the output signal) of all its outgoing (emergent) connections. For example, given a neuron \(N \) with name \(n \), threshold \(T \), two activated incoming connections (from neurons 1 and 3 with signals \(s_1 \) and \(s_3 \) respectively) and two outgoing connections (to neurons 2 and 5), that is

\[
N = < n ; T ; < s_1 ; \text{on} ; 1 > . < s_3 ; \text{on} ; 3 > . [] ; < 0 ; 1 ; 2 > . < 0 ; -1 ; 5 > . [] >
\]

the outcome of the operation \(\text{fire} \) acting on \(N \) will be given by

\[
\text{fire} N = < n ; T ; < s_1 ; \text{on} ; 1 > . < s_3 ; \text{on} ; 3 > . [] ; < s_1 + s_3 ; 1 ; 2 > . < s_1 + s_3 ; -1 ; 5 > . [] >
\]

Two pre-conditions have to be met for a neuron to fire, namely all its incoming connections must be activated and the \emph{weighted} sum of the incoming signals must equal or exceed the threshold of that neuron. When those conditions are satisfied, a signal is copied across to all the neuron’s outgoing connections. Rather than combine all these different actions into a single operation, we have introduced \(\text{fire} \) which is essentially concerned with just transmitting the sum of the activated incoming signals to a neuron across to all the neuron's outgoing connections. Appropriate use of existing operations such as \emph{all-active}? will ensure that the neurons in a network fire as required.

We can express the behaviour of \(\text{fire} \) in terms of the operation \emph{sum-active} of \(\text{Info} \), which computes the sum of the activated input signals in a list of incoming neuron connections and \emph{fire-out} of \(\text{Outfo} \) which copies a given signal into the first slot (the output signal) of all the 3-tuples of a list of outgoing connections. This leads immediately to the axiom

\[
\text{fire} < a ; b ; c ; d > = < a ; b ; c ; (\text{fire-out} (\text{sum-active} c) d) >
\]

Having fired a neuron, our next task is to spread its signal out to the appropriate connections in the network. The three operations \emph{one-shot}, \emph{spread-out} and \emph{spread} are concerned with this task.

14.8.3 The Operation “one-shot”

Readers may now be thinking “wait a minute, when a neuron fires, it is the \emph{weighted} sum of the incoming signals which is copied across, not just the sum”. We can ensure
that the weighted sum is indeed copied across using our existing operation \textbf{fire} by simply replacing the input signal for each incoming connection to a neuron by the product \(w \times f\) where \(w\) denotes the weighting of the connection and \(f\) the \textit{output} signal which has emanated from the corresponding sending (source) neuron. We therefore introduce an operation

\[
\text{one-shot} : \text{name signal name network} \rightarrow \text{network}
\]

whose behaviour is as follows. The application \textbf{one-shot id1 v id2 ns} where \(id1, id2 \in \text{name}, v \in \text{signal} \) and \(ns \in \text{network}\) seeks out the neuron with name \(id2\) in the network \(ns\) and seeks out the 3-tuple in that neuron’s list of “incoming” connections whose third slot (that is “source” neuron) has the value \(id1\). The operation then changes the input value of this 3-tuple (that is its first slot) to the given value \(v\) (the second argument of \textbf{one-shot}) and sets the value in the second slot of this 3-tuple to on (that is “activates” \(id1\). If no neuron identifier \(id2\) is present in the given network, the operation is to return the value of the original network.

The individual 4-tuple (neuron) corresponding to \(id2\) will be given by \(< id2 ; b ; c ; d >\) where \(b \in \text{thresh}, c \in \text{info} \) and \(d \in \text{outfo}\). From the specification \textbf{info}, we recall that the application \textbf{change-weight v id1 c} amends the input signal value emanating from neuron \(id1\) to the value \(v\) and activates \(id1\). Hence after application of \textbf{one-shot}, the value of the above 4-tuple is

\[
< id2 ; b ; (\text{change-weight v id1 c}) ; d >
\]

Remember, the operation \textbf{one-shot} must first search through the list of neurons which makes up the network to look for \(id2\) and then apply \textbf{change-weight} to achieve its task. This leads to the axioms

\[
\text{one-shot id1 v id2 []} = []
\]

\[
\text{one-shot id1 v id2 < a ; b ; c ; d > . ns} =
\]

\[
\text{IF} \ a == \text{id2} \ \text{THEN}
\]

\[
< \text{id2} ; b ; (\text{change-weight v id1 c}) ; d > . \ ns
\]

\[
\text{ELSE}
\]

\[
(\text{one-shot id1 v id2 ns}) \ \text{app} < a ; b ; c ; d > . []
\]

\[
\text{ENDIF}
\]

(Note that if the neuron identifier \(id2\) is not present in the network, the resulting network will be the list of 4-tuples of the original network but in a different order). We then observe that if \(f\) denotes the output signal from a neuron named \(id1\) and \(w\) denotes the weight \(w_{12}\) of the connection from \(id1\) to \(id2\), we can change the input signal to the required weighted value \(w_{12} \times f\) by means of the application

\[
\text{one-shot id1 (w * f) id2 ns}
\]

where \(*\) is the multiplication operation supplied by \textbf{Signal}. This application will be used shortly. We can represent the behaviour of \textbf{one-shot} graphically and this is shown in Fig. 14.11.
Figure 14.11: The behaviour of the operation one-shot
14.8.4 The Operations “spread-out” and “spread”

We noted above that the application one-shot id1 (w*f) id2 ns takes a network ns and returns a new network value in which the input signal value of the connection (if any) from neuron id1 to the individual neuron id2 is given the value w*f and the connection activated, (the value in the second slot of the same connection’s “input” 3-tuple is set to on). We now require an operation which extends this process so that all the neurons which have connections from id1 have the input signals in their list of input 3-tuples assigned a specified value and are activated. In other words, generalise the above operation from a single destination neuron id2 to a collection of outgoing connections. We therefore introduce the operation

\[\text{spread-out} \] _ _ _ : \text{name outflow network} \to \text{network} \]

to accomplish this task. We can express an arbitrary list of output neuron connections as \(< f ; w ; id2 > . \) \(o \) where \(f \) is an output signal value, \(w \) is the weight of the connection to the destination neuron \(id2 \) and \(o \) is the tail of the list of remaining neuron connections.

If the output list contains only the single 3-tuple \(< f ; w ; id2 > \) (that is \(o \) is the empty list \([] \)), then clearly the results of the operations spread-out and one-shot are “equivalent” in the sense that

\[\text{spread-out} \ \text{id1} \ < \ f ; w ; \text{id2} > . \ [] \ \text{ns} = \text{one-shot} \ \text{id1} \ (w*f) \ \text{id2} \ \text{ns} \]

where \(\text{ns} \in \text{network} \). For the general case when \(o \) is not the empty list, we need to re-apply the operation spread-out with arguments \(\text{id1} \), the tail of the list of output 3-tuples, \(o \), and the network one-shot \(\text{id1} \ (w*f) \ \text{id2} \ \text{ns} \). If the list of output 3-tuples is empty, we require the outcome of spread-out \(\text{id1} \ [] \ \text{ns} \) to return an unchanged network \(\text{ns} \). This leads to the axioms

\[\text{spread-out} \ \text{id1} \ [] \ \text{ns} = \ \text{ns} \]

\[\text{spread-out} \ \text{id1} \ (< f ; w ; \text{id2} > . \ o) \ \text{ns} = \]

\[\left(\text{spread-out} \ \text{id1} \ o \ (\text{one-shot} \ \text{id1} \ (w*f) \ \text{id2} \ \text{ns}) \right) \]

It is important to realise that the second argument of spread-out is an arbitrary list of output 3-tuples and so does not necessarily correspond to the list of “outgoing” connections of neuron \(\text{id1} \) (its first argument).

In order to achieve our aim of changing the input values of all those neurons contained expressly in the output list of neuron \(\text{id1} \), we introduce the operation

\[\text{spread} _ _ : \text{neuron network} \to \text{network} \]

Given a neuron and a network, this operation returns as its result, the network produced by amending the input values of all those neurons contained within the output list of the specified neuron. This operation can be specified directly in terms of the operation spread-out by constraining it to operate expressly on the output list of the specified
neuron id1. Hence for a neuron \(< id1 \); b; c; d > where b is its threshold, c is its list of input 3-tuples, d its list of output 3-tuples and a network ns, we have the axiom

\[
\text{spread} < \text{id1} ; b ; c ; d > \text{ns} = \text{spread-out id1 d ns}
\]

The behaviour of the operation spread is shown schematically in Fig. 14.12 where \(f \) is the output signal from id1 and the weights \(w_{ij} \) are enclosed within curly braces. Note that the neurons will have other incoming connections and that id2, id3 and id4 will have outgoing connections but these are omitted to avoid unnecessary detail.

14.9 The Operations “all-settled?” and “settle”

We recall that the operation all-settled? takes a network (a list of neuron 4-tuples) and returns true if no neuron in the network has the second slot of all its list of input 3-tuples set to on. The operation returns false otherwise. For an empty network, the operation is required to return the value true.

From the specification Neuron of Fig. 14.7, the selector operation input applied to a neuron 4-tuple \(n \) returns the list of “incoming” input neuron connections of \(n \). Also from info (Fig. 14.10), the application all-active? (input \(n \)) returns true if all the 3-tuples in the list of incoming 3-tuples have the value on. The axioms for all-settled? are therefore

\[
\text{all-settled? } [] = \text{true}
\]

\[
\text{all-settled? } n \cdot \text{ns} = \text{IF all-active? input } n \text{ THEN false}
\]

\[
\text{ELSE all-settled? ns ENDIF}
\]

where \(\text{ns} \in \text{network} \). Our concluding task is to derive axioms for the operation settle and we now analyse the four cases A, B, C and D that can arise.

Case (A)

First, if there is no neuron which has all of its inputs activated, (that is all-settled? \(n \cdot \text{ns} \) has the value true), the operation settle returns an unchanged network, which leads directly to the conditional axiom

\[
\text{settle } n \cdot \text{ns} = n \cdot \text{ns} \quad \text{IF all-settled? } n \cdot \text{ns} \quad \text{(A)}
\]

Case (B)

Suppose now that the 3-tuples in the list of incoming connections of \(n \) are all activated. This neuron will then fire if additionally, the (weighted) sum of the input values of these activated neurons (given by the expression sum-active input \(n \)) is equal to or exceeds the threshold value of neuron \(n \), (that is threshold \(n \)). If both of these conditions are met, then neuron \(n \) will fire. The network which results when \(n \) fires and spreads its output to its outgoing connected neurons is given by the network spread (fire \(n \)) \(\text{ns} \). Having fired, \(n \) needs to be de-activated, which is achieved by applying the operation
Before application of ‘‘spread’’

After application of ‘‘spread’’

Figure 14.12: The behaviour of the operation spread
sleep to the “fired” neuron, that is sleep (fire n). This de-activated neuron is now appended to the end of the list of other neurons which make up the network using the concatenation operation app. The resulting network will be given by the expression

\[
\text{spread (fire n)} \text{ ns app (sleep (fire n)) . []}
\]

We now need to repeat the application of settle to this resulting network. This leads to the (conditional) axiom

\[
\text{settle} \ n . \text{ns } = \\
\text{settle} \ (\text{spread (fire n)} \text{ ns app (sleep (fire n)) . []})
\]

IF all-active? input n

and threshold n <= sum-active input n

(B)

Case (C)

Suppose now, that the 3-tuples in the list of incoming connections of n are all activated but the sum of the input values of these activated neuron connections is less than the threshold value of n. In this case, n is simply de-activated and re-inserted into the list of neurons and the subsequent behaviour of the network is determined by applying settle to the resulting network. This leads immediately to the conditional axiom

\[
\text{settle} \ n . \text{ns } = \\
\text{settle} \ (\text{ns app sleep n . []})
\]

IF all-active? input n

and sum-active input n < threshold n

(C)

Case (D)

In the remaining case, n will not have all input neurons activated and so is incapable of firing, in which case its 4-tuple is simply removed from the head of the list, appended to the end and the operation repeated on the remaining neurons of the network, so that we have

\[
\text{settle} \ n . \text{ns } = \text{settle} \ (\text{ns app n . []}) \text{ for all other cases} \quad \text{(D)}
\]

The four results (A), (B), (C), (D) can be expressed in the single unconditional axiom

\[
\text{settle} \ n . \text{ns } = \\
\text{IF} \ \text{all-settled?} \ n . \text{ns} \ \text{THEN} \ n . \text{ns}
\]

ELSEIF all-active? input n and (threshold n <= sum-active input n)
THEN settle ((spread(fire n) ns) app (sleep (fire n).[]))

ELSEIF all-active? input n THEN

 settle (ns app sleep n.[])

ELSE

 settle (ns app n.[])

ENDIF

The complete specification Neural-Network is given in Fig. 14.13 and an OBJ3 prototype presented in Appendix 2.

14.10 Example Evaluation of a Neural Network

It will be instructive to look at the neural network shown in Fig. 14.8 and consider the network which results from applying the operation settle, that is

settle < 1 ; -1 ; < 1 ; on ; 0 > . [] ;
 < 0 ; 1 ; 3 > . < 0 ; -1 ; 4 > . [] > .

 < 2 ; -1 ; < 0 ; on ; 0 > . [] ;
 < 0 ; -1 ; 3 > . < 0 ; 1 ; 4 > . [] > .

 < 3 ; -1 ; < 0 ; off ; 1 > . < 0 ; off ; 2 > . [] ;
 < 0 ; 1 ; 5 > . [] > .

 < 4 ; -1 ; < 0 ; off ; 1 > . < 0 ; off ; 2 > . [] ;
 < 0 ; 1 ; 5 > . [] > .

 < 5 ; -1 ; < 0 ; off ; 3 > . < 0 ; off ; 4 > . [] ;
 < 0 ; 1 ; 0 > . [] > . []

This example was run using the OBJ3 prototype given in Appendix 2 and a corresponding OBJ3 program EXAMPLE-NEURON-NETWORK is presented at the end of that prototype. In that program, the neural network of Fig. 14.8 is expressed as the nullary operation network-before and the result of the application settle to network-before is denoted by the nullary operation network-after. As a check, the Boolean terms all-settled? network-before and all-settled? network-after (denoted by settled-before? and settled-after? respectively) are also evaluated. These terms should reduce to false and true respectively. Note that the lists of input and output neuron connections for each neuron j have been written as infoj and outfoj respectively. This was done to avoid including yet more brackets necessary for each occurrence of the insertion operation “ . “, (as noted earlier, OBJ3 is very unforgiving on this point !). We used the built-in
The output network, network-after is

\[
\langle 3 \; -1 \; \langle 1 \; \text{off} \; 1 \rangle \rangle \; \langle 0 \; \text{off} \; 2 \rangle \; \langle 1 \; 1 \; 5 \rangle \; \langle [] \rangle ;
\]

\[
\langle 2 \; -1 \; \langle 0 \; \text{off} \; 0 \rangle \rangle ;
\]

\[
\langle 0 \; -1 \; 3 \rangle \; \langle 0 \; 1 \; 4 \rangle \; \langle [] \rangle .
\]

\[
\langle 4 \; -1 \; \langle -1 \; \text{off} \; 1 \rangle \rangle \; \langle 0 \; \text{off} \; 2 \rangle \; \langle -1 \; 1 \; 5 \rangle \; \langle [] \rangle .
\]

\[
\langle 1 \; -1 \; \langle 1 \; \text{off} \; 0 \rangle \rangle ;
\]

\[
\langle 1 \; 1 \; 3 \rangle \; \langle 1 \; -1 \; 4 \rangle \; \langle [] \rangle .
\]

\[
\langle 5 \; -1 \; \langle 1 \; \text{off} \; 3 \rangle \rangle \; \langle -1 \; \text{off} \; 4 \rangle \; \langle [] \rangle ;
\]

\[
\langle 0 \; 1 \; 0 \rangle \; \langle [] \rangle .
\]

The program was run on a Sun 4 workstation using version 2.03 of OBJ3 and took under one minute to compile and execute. Observe that the output from the network is given by the final slot of the output neuron 5, that is the output list

\[
\langle 0 \; 1 \; 0 \rangle \; \langle [] \rangle
\]

containing a single triple. In other words an output signal of 0 to the dummy neuron ‘0’.

The number of rewrites taken to reduce the terms settled-before?, settled-after? and network-after were as follows

- \text{settled-before?} took 17 rewrites
- \text{settled-after?} took 748 rewrites
- \text{network-after} took 712 rewrites

14.11 Some Comments on the Algebraic Specification

There are several important observations to be made about the specification Neural-Network of Fig. 14.13. The first concerns the use of lists to represent the input and output connections to an individual neuron and the collection of neurons which make up the network itself. Axioms describing the behaviour of the operations of Info, Outfo and Neural-Network were obtained by systematically “looking through” the constituent elements of the associated list and “processing” the appropriate element or elements. This requirement to methodically examine each neuron (or connection 3-tuple) in turn,
can be satisfied when lists are used. The element at the head of the list can be isolated, transformed or left unaltered as required and the “processing” repeated (recursively) with the remaining elements which make up the tail of the list. Such a procedure cannot be undertaken with a set structure since the elements of a set have no ordering. We can illustrate the sort of problem that can arise, had we elected to use sets by considering, as an example, the behaviour of the operation settle \(_n \rightarrow \text{network}\). We can easily adapt the parameterised List specification (Fig. 14.4) to a generic Set specification by replacing the empty list \([\]\) by the empty set \(\{\}\), re-interpreting the cons operation \(_\cdot\) _ as the insertion operation which places a given element into a set provided that element is not already in the set (the operation \(_\cdot\) _ is then identical with the operation \text{add} of the specification \text{Set} given in Fig. 12.2) and replacing the associative concatenation operation \text{app} by the associative-commutative operation of set union \(\cup\). The axioms of the generic set specification would then take the form

\[
e_1 \cdot (e_2 \cdot s) = \text{IF } e_1 == e_2 \text{ THEN } e_1 \cdot s \text{ ELSE } e_2 \cdot (e_1 \cdot s) \text{ ENDIF}
\]

\[
\emptyset \cup s = s
\]

\[
(e \cdot s_1) \cup s_2 = e \cdot (s_1 \cup s_2)
\]

\[
s_1 \cup s_2 = s_2 \cup s_1
\]

\[
is-in? \ e \ \emptyset = \text{false}
\]

\[
is-in? \ e_1 (e_2 \cdot s) = \text{IF } e_1 == e_2 \text{ THEN } \text{true} \text{ ELSE } \text{is-in? e_1 s ENDIF}
\]

where \(e, e_1, e_2 \in \text{element}\) and \(s, s_1\) and \(s_2\) are members of the sort set (the counterpart of the sort list). If we carry this correspondence between the specifications \text{List} and \text{Set} through, the axiom for settle corresponding to case (D) above would take the form

\[
\text{settle } n.n.s = \text{settle } (n.s \cup n.\emptyset)
\]

and since set union is commutative, we have on subsequently applying the second and third axioms above

\[
n.s \cup n.\emptyset = (n.\emptyset) \cup n.s = n.(\emptyset \cup n.s) = n.n.s
\]

which leads to the result \(\text{settle } n.n.s = \text{settle } (n.n.s)\)!

The next observation leads on from this use of lists and concerns the algebras which provide models of our specification. A requirement of our description of a neural network is that the order in which the constituent neurons of the network (and the individual incoming and outgoing neuron connections) appear is of no importance. For example, “listing” the individual neuron 4-tuples of the network \text{network}-\text{before} in reverse order should specify exactly the same network. However, under an initial interpretation, these two network expressions will denote different values in any intended model (since the axioms of \text{List} cannot be used to show they are equal). On the other hand, if final algebra semantics are used for the instantiated List specifications, two neural network expressions are equal unless application of the operation \text{is-in?} produces a different result, which
will only occur if one neural network contains a neuron (or neural connection) that is not included in the other network.

The final comment concerns adapting Neural-Network, which specifies a network with a general connection geometry to specify particular classes of networks such as feed-forward and recurrent networks. This problem forms the basis of the following Exercises.

Exercise 14.6

Adapt Neural-Network so that it specifies a simple feed-forward neural network. You could, for example, consider treating the constructor _ _ _ of List as a hidden operation and introduce a new constructor which builds terms ("networks") that are well-formed in the sense that they conform to a feed-forward network geometry. Would such a strategy enable you to continue using a generic list module for the neural connections and the network itself?

Exercise 14.7

Repeat the above problem for a layered network in which a neuron in any given layer can have connections to neurons one layer above and one layer below, no other types of connection being permitted.

14.12 VDM Specification of the Neural Network

In this section we derive a model-based specification of the neural network, making comparative observations of the differing specification styles as we progress. The same network model will be used as in section 14.3, in that the principal function will be settle, which inputs a network and 'evaluates' it to a settled state. Initially the VDM network representation will also image the algebraic, but consideration of the resulting data type invariant forces a shift in representation, and the resulting network is modelled chiefly in terms of maps.

14.12.1 Requirements

We require a specification of a neural network as discussed in section 14.3.

14.12.2 Creation of a Data Model: First Attempt

As a first attempt, a 'neuron-centred' representation will be used that follows closely the algebraic formalisation.

Each neuron is identified by a natural number:

\[
\text{Neuron.name} = N
\]

Following section 14.5.1, a single input to a neuron is a structure composing an input signal (is), the source neuron of the signal (from), and a flag which captures whether

*** The trivial data-type property

PROPS Elem

SORTS element

ENDPROPS

*** **

*** Simple parameterised list

SPEC List (E : Elem)

USING Boolean

SORTS list ne-list

SUBSORT ne-list < list

OPS

[] : -> list
_ . _ : element list -> ne-list
_ app _ : list list -> list [ASSOC]
is-in? _ _ : element list -> bool

FORALL

e, e1, e2 : element
s, s1, s2 : list

AXIOMS for list concatenation:

[] app s = s
(e . s1) app s2 = e . (s1 app s2)

AXIOMS for determining whether an element e1 is present in a list:

is-in? e1 [] = false

is-in? e1 (e2 . s) = IF e1 == e2 THEN true ELSE is-in? e1 s ENDIF

ENDSPEC

*** **
*** Unconstrained 3-tuples

SPEC Triple(S1 : Elem && S2 : Elem && S3 : Elem)

SORT triple

OPS

< _ ; _ ; _ > : S1’s element S2’s element S3’s element
 -> triple

1-st _ : triple -> S1’s element
2-nd _ : triple -> S2’s element
3-rd _ : triple -> S3’s element

FORALL

a : S1’s element
b : S2’s element
c : S3’s element

AXIOMS:

1-st < a ; b ; c > = a
2-nd < a ; b ; c > = b
3-rd < a ; b ; c > = c

ENDSPEC

*** ***

*** *** List of 3-tuples *** ***

SPEC List-of-Triple(F : Elem && M : Elem && E : Elem)

USING List (Triple (F && M && E))

ENDSPEC

*** ***

*** on/off activation state

SPEC Activation

SORT activation

OPS

on : -> activation

off : -> activation

ENDSPEC

*** ***

*** List of output (emergent) neuron connections

SPEC Outfo

USING List-of-Triple(Signal && Weighting && Name)

WITH

1-st _ : triple -> signal AS value-of _,
2-nd _ : triple -> weighting AS weight _,
3-rd _ : triple -> name AS to-neuron _,
list AS outfo

OPS

fire-out _ _ : signal outfo -> outfo

FORALL

l : outfo
m, n : signal
w : weighting
p : name

AXIOMS for fire-out:

fire-out m [] = []

fire-out m < n ; w ; p > . l = <m ; w ; p > . (fire-out m l)

ENDSPEC

*** ***
*** List of input (incoming) neuron connections

SPEC Info

USING List-of-Triple(Signal & Activation & Name)

WITH list AS info, ne-list AS ne-info

OPS

 sum-active _ : info -> signal
 all-active? _ : ne-info -> bool
 make-passive _ : info -> info
 change-weight _ _ _ : signal name info -> info

FORALL

 t : triple
 l : info
 a : activation
 id1, m : name
 n, s : signal

AXIOMS for sum-active:

 sum-active [] = 0

 sum-active t . l = IF 2-nd t == on THEN
 1-st t + sum-active l
 ELSE sum-active l ENDIF

AXIOMS for all-active?:

 all-active? < n ; a ; m > . [] = a == on

 all-active? < n ; a ; m > . l = a == on and all-active? l

AXIOMS for make-passive:

 make-passive [] = []

 make-passive < n ; a ; m > . l =
 < n ; off ; m > . make-passive l

AXIOMS for change-weight:

 change-weight s id1 [] = []

 change-weight s id1 < n ; a ; m > . l =
 IF id1 == m THEN 1 app < s ; on ; id1 > . []
 ELSE (change-weight s id1 l) app < n ; a ; m > . []
 ENDIF

ENDSPEC

*** ***

*** Individual neuron as a 4-tuple

SPEC Neuron (S1 : Elem â& S2 : Elem â& S3 : Elem â& S4 : Elem)

SORT neuron

OPS

<_ ; _ ; _ ; _> : S1’s element S2’s element S3’s element
S4’s element -> neuron

identifier_ : neuron -> S1’s element

threshold_ : neuron -> S2’s element

input_ : neuron -> S3’s element

output_ : neuron -> S4’s element

FORALL

a : S1’s element
b : S2’s element
c : S3’s element
d : S4’s element

AXIOMS:

identifier < a ; b ; c ; d > = a
threshold < a ; b ; c ; d > = b
input < a ; b ; c ; d > = c
output < a ; b ; c ; d > = d

ENDSPEC

*** **
Neural network as a list of neurons

SPEC Neural-Network

USING List (Neuron (Name &k Threshold &k
 Info FIT element AS info &k
 Outfo FIT element AS outfo &k)
WITH list AS network

OPS

- sleep _ : neuron \(\rightarrow\) neuron
- fire _ : neuron \(\rightarrow\) neuron
- spread _ _ : neuron network \(\rightarrow\) network
- spread-out _ _ _ : name outfo network \(\rightarrow\) network
- one-shot _ _ _ _ : name signal name network \(\rightarrow\) network
- all-settled? _ : network \(\rightarrow\) bool
- settle _ : network \(\rightarrow\) network

FORALL

- a, id1, id2 : name
- f, v : signal
- b : thresh
- w : weighting
- c : info
- d o : outfo
- n : neuron
- ns : network

AXIOM for sleep:

\[
sleep < a ; b ; c ; d > = < a ; b ; make-passive c ; d >
\]

AXIOM for fire:

\[
fire < a ; b ; c ; d > =
\]

\[
< a ; b ; c ; (fire-out (sum-active c) d) >
\]

AXIOM for spread:

\[
spread < id1 ; b ; c ; d > ns = spread-out id1 d ns
\]

AXIOMS for spread-out:

- spread-out id1 [] ns = ns
- spread-out id1 (< f ; v ; id2 > . o) ns =

\[
(spread-out id1 o (one-shot id1 (w * f) id2 ns))
\]
AXIOMS for one-shot:

one-shot id1 v id2 [] = []

one-shot id1 v id2 < a ; b ; c ; d > . ns =

IF a == id2 THEN

< id2 ; b ; (change-weight v id1 c) ; d > . ns

ELSE

(one-shot id1 v id2 ns) app < a ; b ; c ; d > . []

ENDIF

AXIOMS for all-settled?:

all-settled? [] = true

all-settled? n . ns = IF all-active? input n THEN false

ELSE all-settled? ns ENDIF

AXIOM for settle:

settle [] = []

settle n . ns =

IF all-settled? n . ns THEN n . ns

ELSEIF all-active? input n and (threshold n <= sum-active input n) THEN

settle ((spread(fire n) ns) app (sleep (fire n).[]))

ELSEIF all-active? input n THEN

settle (ns app sleep n.[])

ELSE

settle (ns app n.[])

ENDIF

ENDSPEC

*** **

Figure 14.13: The complete algebraic specification Neural-Network
the input is activated. As in figure 14.3, we capture this with a type consisting of two constants:

\[Activation = on \mid off \]

and the input structure is then:

\[
Neuron input :: is \quad : R
\]
\[
act : Activation
\]
\[
nfrom : Neuron name
\]

No particular ordering is required, so the input connections to a neuron can be modelled as a set:

\[\text{All Neuron inputs} = \text{Neuron input-set} \]

Observations:

- Compare the way the simple type \(Activation \) is declared in both languages. In the algebraic style it is explicit that the type has two constructors that return a constant, and the VDM notation is in a sense a shorthand for this.

- Notice how in the algebraic specification the parameterised \(\text{Triple} \) structure mirrors VDM's composite with three slots. Whereas in section 14.5.1 the constructor is

\[< _ _ _ > \]

in VDM it is the \(mk \)-function. Thus once types have been defined in an algebraic specification language, they can be used rather like 'built-in' types in VDM. For example, in the network of figure 14.8, the input connection from neuron 3 to neuron 5 would be represented by the VDM composite as

\[\text{mk-Neuron input}(1, \text{off}, 3) \]

and using the \(\text{Triple} \) structure represented as:

\[< 1; \text{off}; 3 >. \]

Following section 14.5.1, we store the neuron output information as a structure containing:

\[
Neuron output :: os : R
\]
\[
wt : R
\]
\[
nto : Neuron name
\]

In the same way as the inputs, we represent the output connections as a set:

\[\text{All Neuron outputs} = \text{Neuron output-set} \]

In section 14.5.2 the Neuron was modelled as the composition of its identifier \((id) \), threshold \((thrd) \) and in and out connections. In a similar fashion we use VDM's composite structure to represent a neuron:
Finally, following the discussion in earlier in the chapter on this point, the network is modelled as a sequence of Neurons, to facilitate sequential processing:

\[\text{Network} = \text{Neuron}^* \]

14.12.3 Creation of the Data Type Invariant: First Attempt

The constraints we need to place on the network to make it valid are essentially integrity constraints; for example, each neuron contains sets of information with references to the names of other neurons. Therefore one constraint should be:

'Every neuron referenced by another neuron actually exists.'

Consideration of these constraints leads us to realise that the representation we have chosen is not apt: there is redundancy in the way neuron identifiers are stored, and to compensate for this the invariant would have to express the fact that all the neuron identifiers referenced in the inputs and outputs of each neuron appear elsewhere in the network. In summary, we would do better to choose a representation which is less redundant, and implicitly holds the connections between neurons.

14.12.4 Creation of a Data Model: Second Attempt

As we saw in the Symbol Table example of chapter 4, a shift in representation (usually involving the Map type) may be useful in reducing the size or complexity of the invariant. In our second attempt we will create a more 'connection' oriented model of the network, storing the neuron identifiers separately to their inputs and outputs:

\[\text{Neuron.name} = \text{N} \]

\[\text{Neuron.names} = \text{Neuron.name}^* \]

The nature of the network suggests that connections in the network might be better represented explicitly as arcs between two neurons. A composite type captures the start and end of an arc as follows:

\[\text{Arc} :: \begin{array}{l} \text{start : Neuron.name} \\ \text{end : Neuron.name} \end{array} \]

\[\text{inv mk-Arc(start, end) } \triangleq \text{start } \neq \text{end} \]

The invariant on Arc can be used to constrain the kind of topologies allowed. and here we have simply excluded those networks whose neurons have connections back to
themselves. Collecting the arcs together, we have a set of connections representing the network’s topology:

Connections = Arc-set

As a running example we will use the network in figure 14.8. The connections there can be represented as:

\[
\{ mk-Arc(1, 3), mk-Arc(1, 4), mk-Arc(2, 3), mk-Arc(2, 4),
 mk-Arc(3, 5), mk-Arc(4, 5), mk-Arc(5, 0) \}
\]

Neuron ‘0’ has been added so that the output signal can be recorded from the output neuron numbered ‘5’ (the reason for this will become clear below).

Each neuron has associated with it a *unique* threshold, and we can use the Map type to model this:

Threshold = Neuron_names \(\mapsto \mathbb{N} \)

The network example’s thresholds would be stored as follows:

\[
\{ 1 \mapsto -1, 2 \mapsto -1, 3 \mapsto -1, 4 \mapsto -1, 5 \mapsto -1, 0 \mapsto 0 \}
\]

The threshold of the dummy neuron is set to ‘0’ although it will soon become apparent that this value is purely arbitrary. Each connection has a unique weight associated with it:

Weight = Connections \(\mapsto \mathbb{N} \)

The network example’s weights would be stored as the following:

\[
\{ mk-Arc(1, 3) \mapsto 1, mk-Arc(1, 4) \mapsto -1, mk-Arc(2, 3) \mapsto -1, mk-Arc(2, 4) \mapsto 1,
 mk-Arc(3, 5) \mapsto 1, mk-Arc(4, 5) \mapsto 1, mk-Arc(5, 0) \mapsto 0 \}
\]

Also, each connection will have associated with it a unique activation value and a boolean valued activation level:

Value = Connections \(\mapsto \mathbb{N} \)

Activation = Connections \(\mapsto \mathbb{B} \)

Similarly, the network example’s values and activation level, respectively, would be stored:

\[
\{ mk-Arc(1, 3) \mapsto 1, mk-Arc(1, 4) \mapsto 1, mk-Arc(2, 3) \mapsto 0,
 mk-Arc(2, 4) \mapsto 0, mk-Arc(3, 5) \mapsto 0, mk-Arc(4, 5) \mapsto 0, mk-Arc(5, 0) \mapsto 0 \}
\]

\[
\{ mk-Arc(1, 3) \mapsto true, mk-Arc(1, 4) \mapsto true, mk-Arc(2, 3) \mapsto true,
 mk-Arc(2, 4) \mapsto true, mk-Arc(3, 5) \mapsto false, mk-Arc(4, 5) \mapsto false, mk-Arc(5, 0) \mapsto false \}
\]

This example shows up the difference in a ‘connection-oriented’ representation: neurons numbered 1 and 2 in figure 14.8 have thresholds that are meant to always allow the
incoming signals to pass, therefore there is no need to represent a level of neurons below them (in effect they are the input neurons). This also means that we initialise the network by activating all the connections from these input neurons.

The output neurons, however, have thresholds, and in our connection oriented representation we must represent the connections to the ‘outside world’ from them, so that any output they give will be stored there. To do this, we simply connect them to the dummy neuron called ‘0’. The dummy neuron will never be processed, because its inputs are the outputs of the whole network.

Putting all these components together we form the network as a composite data structure:

\[
\text{Network} :: ns : \text{Neuron_names} \\
\quad t : \text{Threshold} \\
\quad w : \text{Weight} \\
\quad v : \text{Value} \\
\quad a : \text{Activation}
\]

14.12.5 Creation of Data Type Invariant: Second Attempt

The invariant for the Network composite has to capture integrity constraints on the maps. In the weight map, all the arcs in the domain must be between valid neuron identifiers in the network:

\[
\forall x \in \text{dom } w \cdot \exists n, m \in ns \cdot x.\text{start} = n \land x.\text{end} = m
\]

The other maps using the ‘Connection’ type can be equated to the weight map:

\[
\begin{align*}
\text{dom } w &= \text{dom } v \land \\
\text{dom } w &= \text{dom } a
\end{align*}
\]

Putting these constraints together we have:

\[
\text{inv } \text{mk_Network}(ns, t, w, v, a) \triangleq \\
\forall x \in \text{dom } w \cdot \exists n, m \in ns \cdot \\
x.\text{start} = n \land x.\text{end} = m \\
\text{dom } w = \text{dom } v \land \\
\text{dom } w = \text{dom } a
\]

14.12.6 The Network Operation

VDM allows the specifier to choose between two types of specification:

(i) operations centred around a system state or

(ii) functions defined purely in terms of parameters.

The former option is preferable when the central object in the model is highly structured, complex, and a number of operations are required which access different parts of it. We only require one operation on the network, and the network itself is not highly structured,
so in this case we will rely on a purely functional approach. Moreover, an implicit post-
condition for the network operation \textit{settle} is not apparent, so the nature of the application
forces us to make the specification in an executable form. It is also interesting that the
structure of \textit{settle}'s definition is identical to its algebraic counterpart in figure 14.13.

We will first develop the auxiliary functions. For a neuron to fire in our model, as
we pointed out in section 14.6, all its input connections must be active. We therefore
need the following function, which corresponds to the algebraically defined ‘all-active'
operation in section 14.6.2:

\begin{align*}
\textit{active} : \textit{Neuron_name} \times \textit{Activation} \rightarrow \mathbb{B} \\
\text{active} (nm, a) \triangleq \\
\{ a(mk\text{-arc}(z, nm)) \mid mk\text{-arc}(z, nm) \in \text{dom} \ a \} = \{ \text{true} \}
\end{align*}

The \textit{active} function inputs a neuron name and an activation mapping, and returns \text{true}
if and only if \textit{all} the neuron’s inputs are active (that is, the activation map evaluations
all the input connections to \text{true}). It uses set comprehension to build up a set of boolean
activation values of all the connections that input neuron \textit{nm}. If the value \text{false} does not
belong to this set, then all the activation values are true, and \textit{active} therefore returns
true. For example:

\begin{align*}
\text{active} (3, \{mk\text{-Arc}(1, 3) \mapsto \text{true}, mk\text{-Arc}(1, 4) \mapsto \text{true}, mk\text{-Arc}(2, 3) \mapsto \text{true}, \\
\quad mk\text{-Arc}(2, 4) \mapsto \text{false}, mk\text{-Arc}(3, 5) \mapsto \text{false}, mk\text{-Arc}(4, 5) \mapsto \text{false}, mk\text{-Arc}(5, 0) \mapsto \text{false} \})
\end{align*}

will evaluate to \text{true}. Note that \textit{active} deals with input neurons (which have no input
connections) in the way that we would like: in their case the set comprehension expression
evaluates to the empty set, and \textit{active} returns \text{false}.

Next we require a function to sum a neuron’s inputs, in preparation for this sum be-
ing compared with the neuron’s threshold. Again we use set comprehension, this time
building up a set of (weights \times values) from the neuron’s inputs. Consider the expression:

\begin{align*}
\text{n_set} = \{ w(mk\text{-arc}(z, nm)) \times v(mk\text{-arc}(z, nm)) \mid mk\text{-arc}(z, nm) \in \text{dom} \ w \}
\end{align*}

If a neuron has \textit{n} inputs, then \text{n_set} is the set of \textit{n} values obtained by multiplying each
input signal’s value with its weight. For our example network, for neuron 3 (= nm),
\text{n_set} evaluates to:

\begin{align*}
\{ 1, 0 \}
\end{align*}

We need to combine this with a function \textit{subset} which inputs a set of natural numbers
and outputs their sum. Its definition below uses the ‘let’ construct that we originally
introduced in chapter 4:

\begin{align*}
\textit{subset} : \textit{N_set} \rightarrow \textit{N} \\
\text{subset} (ns) \triangleq \\
\quad \text{if} \ ns = \{ \} \\
\quad \text{then} 0 \\
\quad \text{else let} \ x = \text{takeone}(s) \ \text{in} \ x + \text{subset} (ns \ \setminus \ \{ x \})
\end{align*}
Also, an auxiliary function \textit{takeone} is used, which inputs a non-empty set and returns an element of that set (the function \textit{MAX} defined in chapter 3 could be used for this purpose).

Putting these definitions together, the function \textit{sum} which produces the weighted sum of a neuron’s inputs, is defined thus:

\[
\text{sum} : \text{Neuron}_\text{name} \times \text{Weight} \times \text{Value} \rightarrow \mathbb{N}
\]

\[
\text{sum} \ (nm, w, v) \triangleq \text{let } n_\text{set} = \{ w(\text{mk-arc}(z, nm)) \times v(\text{mk-arc}(z, nm) \mid \text{mk-arc}(z, nm) \in \text{dom} \ w \} \\
\text{in } \text{sumset}(n_\text{set})
\]

The corresponding algebraic function is ‘sum-active’ defined in section 14.6.2 (assuming a neuron only sums its inputs when \textit{active} is true). If the \textit{sum} of the weighted inputs of a neuron is equal to or above its threshold, then that neuron will ‘fire’. We require a function to fire the neuron, and spread its ‘pulse’ to the adjoining neurons:

\[
\text{spread} : \text{Neuron}_\text{name} \times \text{Value} \times \mathbb{N} \rightarrow \text{Value}
\]

\[
\text{spread} \ (nm, v, \text{pulse}) \triangleq \text{let } v_\text{set} = \{ \text{mk-arc}(nm, z) \mapsto \text{pulse} \mid \text{mk-arc}(nm, z) \in \text{dom} \ v \} \\
\text{in } \text{sumset}(v_\text{set})
\]

The \textit{spread} function uses map comprehension to define the set of maplets forming a map. It overwrites the old values of the network connections from the fired neuron, with the new pulse. Assuming an output pulse of 1 for neuron 3 in the example, the map comprehension expression in \textit{spread} evaluates to the maplet:

\[
\{ \text{mk-arc}(3, 5) \mapsto 1 \}
\]

As well as firing out the pulse, we also need to activate the out connections, and put the incoming connections to sleep:

\[
\text{activate} : \text{Neuron}_\text{name} \times \text{Activation} \rightarrow \text{Activation}
\]

\[
\text{activate} \ (nm, a) \triangleq a \uparrow \{ \text{mk-arc}(nm, z) \mapsto \text{true} \mid \text{mk-arc}(nm, z) \in \text{dom} \ a \}
\]

\[
\text{sleep} : \text{Neuron}_\text{name} \times \text{Activation} \rightarrow \text{Activation}
\]

\[
\text{sleep} \ (nm, a) \triangleq a \uparrow \{ \text{mk-arc}(z, nm) \mapsto \text{false} \mid \text{mk-arc}(z, nm) \in \text{dom} \ a \}
\]

Finally, we need a function \textit{allsettled} to return true when the network eventually settles down - that is when no more neurons can fire.

\[
\text{allsettled} : \text{Network} \rightarrow \mathbb{B}
\]

\[
\text{allsettled} \ (\text{net}) \triangleq \text{true} \notin \{ \text{active}(n, \text{net}.a(n)) \mid n \in \text{elems net.ns} \} \lor \text{active}(0, \text{net}.a)
\]
The extra ‘or’-ed condition \(\text{active}(0,\text{net}.a) \) is necessary because the network is also deemed to have settled if all the output neurons have fired. In this case the output value is stored in the connections between the output neurons and the dummy neuron ‘0’.

The settle operation

As in the algebraic specification, we create `settle` as a recursive function. In fact the structure of this function is identical to the algebraic version, following Case (A), Case (B), and so on in section 14.9. The differences lie with the auxiliary functions explained above:

\[
\text{settle} : \text{Network} \to \text{Network} \\
\text{settle} \ (\text{mk-Network}(ns, t, w, v, a)) \triangleq \\
\text{let } p = \text{sum}(\text{hd} \ ns, w, v) \text{ in} \\
\text{let } ac = \text{activate}(\text{hd} \ ns, \text{sleep}(\text{hd} \ ns, a)) \text{ in} \\
\text{if } \text{allsettled}(ns) \\
\text{then } \text{mk-Network}(ns, t, w, v, a) \\
\text{elseif } \text{active}(\text{hd} \ ns, a) \land p \geq t(\text{hd} \ ns) \\
\text{then } \text{settle}(\text{mk-Network} (\text{tl} \ ns \ \sim \ [\text{hd} \ ns], t, w, \text{spread}(\text{hd} \ ns, v, p), ac)) \\
\text{elseif } \text{active}(\text{hd} \ ns, a) \land p < t(\text{hd} \ ns) \\
\text{then } \text{settle}(\text{mk-Network} (\text{tl} \ ns \ \sim \ [\text{hd} \ ns], t, w, v, \text{sleep}(\text{hd} \ ns, a)) \\
\text{else } \text{settle}(\text{mk-Network} (\text{tl} \ ns \ \sim \ [\text{hd} \ ns], t, w, v, a))
\]

14.12.7 Exercises 14.8

1. As it stands, our invariant could still do with more conditions to ensure integrity of the input network. Formalise the following condition within our second attempt’s representation above, and thus create an expanded invariant:

 ‘all output neurons must be connected to a dummy neuron identified as 0’

2. Our first attempt at a network representation involved the following invariant: ‘for every neuron, every one of its input and output structures references a neuron existing in the network.’

 Formalise this condition within the representation given, and continue on to specify the whole network and its operation `settle`.

3. Create an invariant for the `Arc` composite that effectively disallows networks having connections that feedback on themselves (this should turn out a similar invariant to that of the `poset` in chapter 5).
14.13 Summary

- An overview of neural networks is given as a prelude to deriving an algebraic specification.

- In simple terms, a neural network is collection of neurons, which are information processing units, where each processing unit can have any number of outgoing connections, but the signals in all these outgoing connections must be the same.

- For the purposes of the specification, we treat a neural network as a collection of neurons. Each neuron is characterised by a collection of incoming connections and a collection of outgoing connections.

- The specification Neural-Network is built up step by step from smaller specification components. Each individual neuron is represented as a 4-tuple which contains the name of the neuron, its threshold, a collection of incoming connections and a collection of outgoing connections. The collections of incoming and outgoing connections both consist of 3-tuples

 - In the case of the incoming connections, each connection is characterised by a signal value, whether the incoming signal has come from an activated or de-activated neuron and the source (neuron name) of the incoming signal.

 - In the case of the outgoing connections, each connection is characterised by a signal value, a weight and the name of the destination neuron to which the signal is being sent.

The emphasis on collections and 3-tuples leads to the use of lists to represent the collections and triples to represent the individual elements of the connections. Generic specifications List and Triple are therefore utilised in the specification of the neural network.

- Specifications Info and Outfo are produced for the collections of incoming and outgoing neuron connections respectively while the specification Neuron describes an individual neuron in terms of a 4-tuple.

- An OBJ3 prototype of Neural-Network is presented in Appendix 2.

- In the last section, we build up a corresponding specification in VDM of the same network model.

Additional Problems – 14.

Problem 14.1

Leading on from the theme of the last problems at the end of the algebraic treatment, there is a “physical” constraint on the structure of the neuron connections in the sense that if there is an outgoing connection from neuron \(N_i \) to neuron \(N_j \), then there is also an incoming connection at neuron \(N_j \) from neuron \(N_i \). What are the implications of this with regards to the specification Neural-Network?

Problem 14.2
Work through, by hand, the sequence of neuron firings for the two layered network of Fig. 14.8 and so confirm that when, initially, the input neurons 1 and 2 have signals of 1, 0 respectively, the final state of the network is as specified by network-after in the OBJ3 prototype of Appendix 2. (Note that this can be done in a few minutes so do not attempt to trace through the sequence of rewrites directly from the specification !).

Problem 14.3

Repeat Problem 14.2 in the case when both input neurons carry the same input signal (0 or 1). In this situation, you will find that regardless of which common value the input neurons 1 and 2 have, the incoming neuron connections to the output neuron 5 will consist of the 3-tuples < 0 ; off ; 3 > and < 0 ; off ; 4 >.

Problem 14.4

Produce a prototype of the specification Neural-Network using Prolog and try it out with the neural network of Fig. 14.8 when the signals from the input neurons 1 and 2 are respectively

(a) 0, 0
(b) 0, 1
(c) 1, 0
(d) 1, 1

Comment on the four results.

Problem 14.5

Use an informal argument to show that a feed-forward neural network specified using Neural-Network will eventually “settle down” in that it will reach a state of “equilibrium” in which no more neurons will have all their incoming neuron connections activated and so will not fire. (For such a state, application of the operation all-settled? to the state will return the value true).
Chapter 15

Background, Comparison and Summary

15.1 Introduction

In this final chapter we start by giving a brief comparison between different specification styles, particularly the two developed in the book. The reader has already had an opportunity to contrast styles, with comparative material appearing in chapter 9 and chapter 14. Following this we give some idea of the history of formal specification languages, and the applications to which they have been put. We will not attempt to give a survey of Formal Specification Languages (the reader could consult [Cohen, Harwood and Jackson 86] chapter 7 for a systematic although somewhat dated survey).

As this chapter focuses on the overall context of specification, pragmatic concerns such as applicability of languages will be discussed. Although these issues are important, we feel that the study of formal specification has a much more fundamental role than their consequent use in software development. The study itself should increase our understanding of what it means to be able to capture a system within a computational framework, using abstract mathematical structures.

15.1.1 Likely Applications for Formal Specification

Which language or development method to use depends primarily on the application being undertaken. For example, so called ‘structured’ development methods have been applied successfully to Business Data Processing for a number of years, and the current favoured British methodology is SSADM [Longworth 92], a combination of several more specific structured methods. In a well trodden, well understood application area such as data processing, little benefit may be gained from the use of a formal approach. More specifically, in applications which centre around Relational Databases and related ‘applications generators’, the use of a formal specification technique might be compared with using a hammer to crack a nut.

Systems whose requirements involve many non-functional aspects, such as characteristics
of interfaces and peripherals, are not easy to capture within the languages taught in this book. This is because formal specification has been pre-dominantly associated with the functional side of software - in other words the specification of data and algorithms.

On the other hand, applications which seem to be the most likely candidates for a formal approach as proposed in this book can be characterised as having one or more of the following features:

- they require the creation of highly structured or complex computational models, such as in the fields of Intelligent Systems or Requirements Capture.
- they have a safety critical aspect to them, such as in monitoring and control software, in which people's lives are at stake if the software fails.
- they involve the creation of and subsequent standardisation of a commonly used computer tool such as a Compiler. This is an attractive application because the formal specification can be used to create the standard, and re-used whenever a new implementation is needed.

15.1.2 Which Type of Formal Specification?

Assume you are part of a development team which decide to use formal specification to capture the requirements of an application. A useful criterion in helping select a formalism is the development team's stage of understanding of the application area. Are you still trying to understand the system requirements, at an early stage of the development cycle, or has the system already been well researched? For these early stages in understanding, and for very abstract system capture, the team would perform a domain analysis which throws up the most important objects in the application. If the results of this were to be captured in a formalism, what type of language would they choose?

Rather than rushing to model the objects identified in the domain analysis with VDM-like data types, languages which allow one to pose axioms representing constraints on the properties of an object are more useful. These axioms could be posed in some very expressive, abstract language such as full first order logic. Such a language, with the addition of sorts, resembles the algebraic approach, except that the axioms can be formulae in logic rather than being committed to equations (see [Meinke and Tucker 93] for a survey of ‘Many Sorted Logic’). Certainly, first order logic without the extra baggage of set theory is well suited to capturing requirements of a system at an early stage of development, where these requirements might evolve or build up incrementally. An over-commitment to a model at this stage may mean that as the application area becomes clearer, hasty design decisions will have to be undone, with the consequent loss of effort.

The algebraic approach put forward in this book is also very abstract, in the sense that we can write down exactly those axioms we need to capture the application, without being tempted to over commit ourselves to a model. In fact, the built-in data structures of VDM can be defined using equational axioms, and this suggests that the algebraic approach allows one to write more abstract specifications. One possible disadvantage is the
commitment to expressing axioms as equations. Although this allows rapid prototyping (as is shown in chapter 13 and appendix 2), it results in a less expressive language than full first order logic. For example, requirements are sometimes stated as rules, and in this case trying to translate them into equations results in an unnecessary loss of their natural form.

At the other extreme, the development team may be experts in the area, and there may be little likelihood of any surprises. Application areas which have already been well thought out, and require a ‘design level’ specification, are ideal for the model-based approach. The platform offered by sets and related structures allow one to quickly build up a mathematically precise specification, which nevertheless is close to a working prototype. The Non-Linear Planner of chapters 6 and 7 in this book is such an example; its model-based specification was based on years of research into Planning, and it was derived from a more abstract specification written in a form of Modal Logic appearing in [Chapman 87].

15.2 Comparison of Specification Languages

15.2.1 General

Comparing the two styles of specification we have used in this book is a difficult task, as there are a number of criteria and viewpoints to consider. The novice to the two styles will initially find them very different: the reliance on sets as the basic data structure, and the use of pre- and post-conditions for operation definition gives VDM a very different flavour than the ‘purist’ algebraic approach as introduced in chapter 8. A study of the Neural Network example developed in the last chapter, however, shows some startling similarities. Most noticeably, it became clear that the built-in types of VDM can be built by the user of an algebraic language, and re-used in building up a specification. That a VDM specification can be made to resemble an algebraic one was shown in chapter 9: the facility to use recursive type construction in VDM, used in the Binary Tree specification, shows that it is possible to build up a data type in VDM algebraically! (see also exercise 15.2 below).

15.2.2 Operator Definition

The most significant difference between the two approaches is apparent when an external system state is used in VDM. The need for the system state device seems to be essential with very complex specifications, although the composing of two specifications with their own local state has been something we have sidestepped (as noted in the introduction to chapter 5).

The crucial benefit of the system state is that we can access and change a (small) part of it, without referring to the rest; in other words, no part of the state changes by the action of an operation, unless explicitly specified to do so. This is summed up, by what is called the ‘default persistence’ assumption:\footnote{Exactly the same idea of default persistence underpins the action representation which we built up}:

\[\text{system state}\]

\[\text{default persistence}\]
If a VDM operation has the effect of changing part of the system state, it is implicitly assumed that the rest of the state remains completely unchanged.

In contrast, an operation defined algebraically on a complex object, which produces a new value of the object by accessing a small part of it, must explicitly return the rest of the object untouched. In other words, parts of an object that do not change have to be somehow declared as such; this is not a problem in small specifications, but becomes enormously inefficient in large ones. Of course, if the value of an operation depends on and only on the value of its parameters, this does make clearer specifications\(^2\).

To help in the comparison of operations, we divide them into the three kinds identified in the algebraic approach: atomic constructor, non-atomic constructor and accessor. For examples of specification in both styles the Stack data type will be used, although an extremely simple application, the main differences (including use of an external state) can be illustrated using it. As a useful correspondence, we will consider values of an abstract data type to be abstractions of the distinct ‘states’ generated within a corresponding VDM definition. Thus the ‘state space’ will be identified with the set of values in an abstract data type.

Atomic constructors are capable of relating all the values of a type in an algebraic specification. The application of a constructor creates a new type value, and therefore corresponds in VDM to an operation that changes the state. An example ‘state’ of the stack from chapter 8 is:

\[
push(push(5, \text{init}), 4)
\]

Application of \(push\), with input value ‘3’, creates a new value of the state:

\[
push(push(push(5, \text{init}), 4), 3)
\]

The new value of ‘\(push\)’ is given by its signature, in the heading of the algebra. In contrast, the new VDM state value is specified by writing the property the new state must satisfy, in the post-condition of \(PUSH\) (taken from chapter 9):

\[
PUSH (n : \mathbb{N})
\text{ ext wr } s : \text{Stack}
\text{ pre true}
\text{ post } s = [n] \prec [s]
\]

‘\(push(push(5, \text{init}), 4)\)’ is an abstraction of the corresponding ‘unbounded stack’ representation from chapter 9, modelled by the sequence ‘[4,5]’. Application of \(PUSH\), with input value ‘3’, means finding a new state which satisfies the post-condition. The only state within the confines of the stack model that satisfies it is of course ‘[3,4,5]’.

Non-atomic constructors are not dealt with any differently in VDM. For example, given the \(POP\) operation:

\[
in \text{the Planning case study of chapter 6.}
\]

\(^2\)This is precisely the ‘referential transparency’ characteristic of pure functional programming languages.
\[\text{POP(_)} \]
\[\text{ext wr s : Stack} \]
\[\pre \text{len s} > 0 \]
\[\post s = \text{tl} \ 	ext{s} \]

the output state is one that satisfies the post-condition, as with \textit{PUSH}. The definition of the \textit{pop} operation in the algebraic notation, with the use of sub sorts, is:

\[
\text{pop} : \text{ne-stack} \rightarrow \text{stack} \\
\text{AXIOM for pop:} \\
\text{pop(push(s,n))} = s
\]

Thus a non-atomic constructor is defined by showing how \text{pop} re-writes typical type values. Using our correspondence between states and type values, the axiom for \text{pop} could be read as ‘if the “state” has the form of \text{push}(s,n), then the output “state” is \text{s}’. Notice how the exceptional case of the empty stack is dealt with: in VDM using a pre-condition, while in the algebraic approach using a sub-sort (in fact there are a number of different ways of dealing with errors - in chapter 8 we used an error value \text{stack-error}).

Accessor operations in the algebraic formulation are defined very much like non-atomic constructors - in terms of the structure of the stack value. The operation \textit{is-empty?}, which finds out if a stack is empty or not, is:

\[
\text{is-empty?} : \text{stack} \rightarrow \text{bool} \\
\text{AXIOMS for is-empty?:} \\
\text{is-empty?} (\text{init}) = \text{true} \\
\text{is-empty?} (\text{push}(s,n)) = \text{false}
\]

Its VDM counterpart is:

\[
\text{IS_EMPTY? (_)} \ b : \text{B} \\
\text{ext rd s : Stack} \\
\pre \text{true} \\
\post b \Leftrightarrow (s = [\])
\]

Accessors output values which are not members of the abstract data type being constructed. In VDM they correspond to operations which only have read access to the state, they do not change it. Accordingly, the heading only contains \textit{ext rd} variables. In the algebraic approach they are defined in the same manner as non-atomic constructors: they give an output value depending on the structure of the input value.

Exercise 15.1

It is possible for VDM post-conditions to make their operators non-deterministic in the sense that more than one output state can satisfy them. On the other hand, our interpretation of equational axioms is deterministic. How do you think our algebraic language
could be extended so that one could write non-deterministic specifications? (hint: think about introducing a choice in the process of re-writing terms).

Exercise 15.2

Consider the following example of an unbounded stack operation, written in explicit form, but using the same sequence model for the Stack:

\[\text{pop} : \text{Stack} \rightarrow \text{Stack} \]

\[\text{pop}(s) \triangleq \begin{cases} \text{if } s \neq [] \text{ then } \text{tl } s \end{cases} \]

As witnessed in the joint case study of chapter 14, the distinction between languages is not so great when one uses explicit function definitions in VDM. The function pop can be given a re-write rule interpretation in the same way as an algebraic axiom for pop, and the only major difference between the two definitions is in the use of the built-in data type Sequence.

Using VDM’s type constructor technique introduced in chapter 9 to create the binary tree specification, we can create a Stack type without the using of the Sequence type, as follows:

\[\text{Stack} = \text{init} \mid \text{Stackpush} \]

\[\text{Stackpush} :: \text{rest} : \text{Stack} \]
\[\text{val} : \mathbb{N} \]

The representation in VDM of the stack example ‘\([4,5]\)’ given above would then be:

\[\text{mk-Stackpush}(\text{mk-Stackpush}(5, \text{init}), 4) \]

(a) Represent ‘\([3,4,5]\)’ in the same way.

(b) Create all the Stack operations as explicit functions on this new Stack representation.

(c) Compare your resulting specification with the algebraic specification. Apart from the purely syntactic, do any differences between specification methods remain?

15.2.3 Building Up Specifications

As you would have gathered by reading this book, the platform that VDM supplies in the shape of its built-in types allows the developer to build up complex specifications quite concisely. As the joint case study shows in chapter 14, the algebraic approach is more verbose, and the developer seems to have to start virtually from first principles. This does have the advantage, however, that only those axioms which capture the characteristics
of the model need to be written down. Also, importing from a library of existing specifications may overcome the apparent ‘low platform’ problem with the algebraic approach. Unfortunately, it may also leave the developer open to choosing particular algebras for convenience (that is because they have already been defined) rather than for their natural fit. The disadvantage of choosing a model with more detail than necessary is certainly one which is apparent in a model-based approach.

A major advantage of the algebraic approach is the ease with which one can build up hierarchical objects, and the disciplined way that importing and exporting of type specifications is handled. The approach seems to encourage one to build bottom-up, performing validation on individual objects as they are specified. VDM is certainly lacking in this area. As previously mentioned, standard VDM now has the facility of modules, but it remains to be seen how effective their use will be. In fact the problem of building up larger specifications, when this involves combining sub-specifications with their own state, seems to be an inherent problem in the model-based approach.

15.2.4 The Data Type Invariant

As a final point of comparison, it is instructive to consider the role of the data type invariant in VDM. When a model is built up from built-in data types, it is expected that the fit with what is desired may not be quite right. The data type invariant is there to tailor the fit, to invalidate any values of the original model that have no counterpart in the requirements.

For the algebraic approach, an understanding of the required properties of an abstract data type is often a useful prelude to identifying an appropriate collection of atomic constructors. We must be careful to create those atomic constructors which will result in exactly the set of values required. However, we may have to resort to introducing additional operations to “constrain” the values of a data type in the sense that the atomic constructors are too general (this idea was discussed in chapter 9 in the context of hidden (private) operations). The additional operations are constructor operations, which are defined (using axioms) in terms of atomic constructors, and which allow “valid” values of the data type to be constructed. Any external specification which wants to use this specification then views these additional constructors as the atomic constructors for that imported type. This means that the original atomic constructors cannot be exported with the specification and must be treated as hidden. The binary search tree of chapter 9 and the petrochemical tank of chapter 11 were two such examples.

15.2.5 Specification versus High Level Programming Languages

Notations for formally capturing specifications which allow a more abstract level of expression than that offered by a programming language are undoubtedly essential in Software Engineering. But programming languages are formal languages, in that they have a precise syntax and semantics. The difference is that program languages are conceived primarily to express algorithms, and to do so efficiently with respect to computer space and time.

As VDM was developed in the 1970's, it is not surprising that some programming lan-
guages have data structuring facilities as least as powerful. For example, modern functional programming languages contain list comprehension, algebraic types, polymorphism and so on. If we limit VDM to explicitly defined functions then specifications are made executable by interpreting them as if they were expressions in a functional language. The main difference of course is in the use of implicit specifications, which abstract away procedural details and therefore have no parallel in programming.

In a similar fashion, executable algebraic specification languages can be compared with modern functional programming languages. Both use a re-write rule model to execute functions; both allow types to be built up using constructor operations. The main difference is that specification language component data types can be structured in a way which emphasizes the formal properties of the specification, with the emphasis on axioms as mathematical objects rather than executable statements.

Exercise 15.1

Specifications have much in common with *scientific theories*:

- a theory can never in itself be *correct*, it has to be validated using experiment and observations. When experimental results are found which are not consistent with the theory, it has to be modified.

- an equation (or more generally, an assertion) within a theory which holds over all the ‘observables’ is centrally important. This is known as an *invariant*.

- for theories to be respectable, they must be self-consistent, and have no redundant axioms.

- Many theories are written in mathematics (for example Relativity, Newton’s Mechanics, Electro-Magnetism) although some are not (Evolution, Marxism).

- Good theories predict future results and observations. For example, it is claimed that the famous ‘Black Hole’ phenomenon was predicted theoretically before it was actually observed.

Taking each point in turn, discuss the connections between scientific theory and software specification.

15.3 History and Applications

15.3.1 VDM and Model-based Specification

VDM evolved within an industrial environment in the early seventies, and it has continued to have a steady following. VDM is best known as a *software development method* and for this one should consult [Jones 90] or [Andrews and Ince 91] for a detailed description. The development method combines specification construction (using VDM-SL) with a rigorous method for refining the specification through a series of software design levels,
each level more concrete than the last. The crucial point is that after a new refinement of the design has been created, proof obligations must be discharged which assert that the new concrete level is an adequate refinement of the last level. This involves the construction of a homomorphism, called the retrieve function, which maps the concrete level into the abstract (the reader may notice a parallel with the algebraic approach here: in chapter 10 we described how homomorphisms are used to relate algebras, in a similar way). If one considers the Case Study in chapter 6, then it should be possible to relate the concrete specification of section 6.4 to the abstract one in 6.3 in this way.

Composition of design levels using the refinement proofs gives us confidence that the final implementation conforms to the initial specification. Although the VDM school has always stressed that the level of formality is up to the developer, mathematical skill and the effort needed to rigorously perform these refinement steps (including discharging the proof obligations resulting from refinement) is significantly greater than that required to construct the initial specification. This problem has lead to the development of proof assistants, software tools which assist the developer perform the formal reasoning required. At their base is a theorem prover which can be adapted to perform the type of reasoning required, although invariably reasoning is human-assisted. One such proof assistant, called Muffin, is specified using VDM itself in [Jones and Shaw, 90]. Our view is that while specifying software formally is here to stay, eventually hand-performed program refinement will become redundant; either ‘prototyping’ languages will become efficient enough (through compiler optimisation), or refinement itself will become largely automatic.

VDM was initially used in compiler definition, and in the related area of writing standard implementation-independent semantics for programming languages. A number of typical applications are reported in [Jones and Shaw, 90] including the specifications of a data base management system, the semantics of an object oriented semantics, and garbage collection and heap storage in the implementation of a programming language.

Other languages similar to VDM-SL have been developed, and a more modern and arguably more comprehensive specification language is Z. It has a wide range of built-in mathematical types, and it also has the advantage of having an easy syntactic construction for including smaller specifications in larger ones, in the shape of the Schema. The Schema is a syntactic device with which one can both build up data types and their invariants, and also define states and their transformations. It is divided into two parts, a declaration part (for signatures) and a predicate part (for semantics). One can build up a large Schema A by using a smaller one B, simply by declaring B to be textually included in A. Also Z is equipped with a device called the schema calculus to formally combine Schemas. It is this relative ease of being able to build up specifications using the Schema that gives Z an advantage over VDM.

Z's use is widespread, but it does have the disadvantage that a Z standard does not yet exist, unlike VDM. Well publicised applications include the specification of part of the IBM CICS system, and this and other examples can be found in [Hayes 86]. A recent introduction to Z may be found in [Potter, Sinclair and Till 91].
15.3.2 Algebraic Specification

The key feature in specifying abstract data types is to present a description of that data type precisely but independent both of any concrete representation of the data objects and any implementation details of the operations. Many-sorted algebras are mathematical structures which correspond exactly to this viewpoint of an abstract data type.

As noted in chapter 8 Zilles was one of the first to recognise the fundamental connection between abstract data types and algebraic systems in the early 1970s ([Zilles 74]). Around the same time, other pioneers such as the ADJ group of Goguen, Thatcher, Wagner and Wright ([Goguen 74]) and [Guttag 75] explored this idea and investigated the implications of treating an abstract data type as a many-sorted algebra.

One of the earliest algebraic specification languages developed was Clear ([Burstell and Goguen 77, 81]) which introduced the notion of parameterised specifications. Other early languages include AFFIRM ([Musser 79]) and OBJ ([Goguen 78]). Since those early days, a large number of algebraic specification languages have been developed of which the most widely known are ACT ONE ([Ehrig and Mahr 85]), Larch ([Guttag, Horning and Wing 85]) and the various versions of OBJ. The specification languages AFFIRM, OBJ, ACT ONE and Axis ([Coleman, Dollin, Gallimore, Arnold and Rush 88]) are based on many-sorted initial algebras and implementations of AFFIRM and OBJ were first produced at the end of the 1970’s.

Before leaving this brief survey of specification languages, it is worth expanding a little on Larch. Larch is different from most other algebraic specification languages in that its specifications are two-tiered. Each Larch specification has one component written in an algebraic language together with a second component which is tailored to suit a particular target programming language. The first tier of a Larch specification uses a common language which permits the production of theories independent of any implementation detail. The second tier of a Larch specification is written in one (or possibly more) interface languages. Having decided on a target programming language for the implementation of a specification, an appropriate specification language is chosen from the set of interface languages and the second tier of the specification then produced. This has the advantage of permitting theories to be written which, although enrichments of those which belong to the common language, have a close affinity with the language(s) used in the final implementation.

The algebraic approach to specification has been successfully applied to the formal specification of a wide variety of systems, ranging from the smaller basic classical data structures to more elaborate software systems such as rewrite rule interpreters ([Coleman, Gallimore and Stavridou 87]), relational databases ([Hayes 88]), hierarchical filing systems ([Dollin 88]) and the semantics of a small imperative programming language ([Berghammer, Ehler and Zierer 88]). For this last application, Berghammer and co-workers applied the algebraic approach to specify a compiler back-end. They showed how the task of code generation for a small language can be specified algebraically. Specifications of both the abstract syntax together with the semantics of the source and target language on the one hand and of the code generation on the other were constructed using hierarchical abstract data types.

The algebraic approach has also been extensively used to specify the term rewriting
engines for executable specification languages. For the three executable languages mentioned, namely AFFIRM, OBJ and Axis, the implementation was designed using the language itself. Very much a case of “the proof of the pudding is in the eating!” Algebraic specifications techniques have also been used in graphics software applications, including the specification of computer graphics systems [Carson 83], the Macintosh QuickDraw program [Nakagawa, Futatsugi, Tomura and Shimizu 88] and the GKS graphics kernel system [Duce 89].

Bibliography

Two other references of interest with regards to applications of the algebraic approach are

One final collection of articles, by different authors, which is well worth exploring and which fills in more of the detail on aspects of algebraic specification languages, such as prototyping algebraic specifications and the application of user-defined syntax in specification languages is

This book is not intended as a tutorial for algebraic specification but can best be summarised as a progress report of research in these particular areas at that time (1989).
/* element_of_set(E,Y) */
/* pre: Y is a set */
/* post: E is an element of Y */
/* iff element_of_set(E,Y) succeeds */

element_of_set(E,[E|Y]).
element_of_set(E,[_|Y]) :-
element_of_set(E,Y).

/* sub_set(X,Y) */
/* pre: X,Y sets */
/* post: X is a subset of Y */
/* iff sub_set(X,Y) succeeds */

sub_set([First_Element|Rest],Y) :-
element_of_set(First_Element,Y),
sub_set(Rest,Y).

sub_set([],Y).

/* eq_set(X,Y) */
/* pre: X,Y sets */
/* post: X=Y iff eq_set(X,Y) succeeds */

eq_set(X,Y) :-
sub_set(X,Y),
sub_set(Y,X).

/* union_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X union Y */

union_set([E|X],Y,[E|Z]) :-
not(element_of_set(E,Y)),
union_set(X,Y,Z).

union_set([E|X],Y,Z) :-
element_of_set(E,Y),
union_set(X,Y,Z).

union_set([],Y,Y).

/* intersect_set(X,Y,Z) */
/* pre: X,Y sets */
/* post: Z = X intersect Y */

intersect_set([E|X],Y,[E|Z]) :-
element_of_set(E,Y),
intersect_set(X,Y,Z).

intersect_set([E|X],Y,Z) :-
not(element_of_set(E,Y)),
intersect_set(X,Y,Z).
intersect_set([], Y, []).

/* minus_set(X, Y, Z) */
/* pre: X, Y sets */
/* post: Z = X minus Y */
minus_set([], X, Y, Z) :-
 element_of_set(X, Y),
 minus_set(X, Y, Z).
minus_set([E|X], Y, [E|Z]) :-
 not(element_of_set(E, Y)),
 minus_set(X, Y, Z).
minus_set([], Y, []).
/******************** SEQUENCE ******************/

/* tl_seq(List_in, List_out): */
/* post: List_out = tl(List_in) */
tl_seq([H|T], T).

/* hd_seq(List_in, El_out): */
/* post: El_out = hd(List_in) */
tl_seq([H|T], H).

/* concat_seq(List_in1,List_in2, List_out): */
/* post: List_out = List_in1 joined with List_in2 */
concat_seq([], List_in2, List_in2).
concat_seq(List_in2, [], List_in2).
concat_seq([H|T], List_in2, [H|List]) :-
 concat_seq(T, List_in2, List),!.
/**************************** COMPOSITE ****************************/

/* init_comp(Name, List_of_slot_names, List_of_slot_values, Comp): */
/* post: Comp is a composite structure with name Name, and a list */
/* of component names given in List_of_slot_names, with corresponding */
/* values in List_of_slot_values */

/* NB we can't just represent them as VDM since we've got to keep a */
/* record of which field is which. We use a Prolog structure */
/* str(Name,Body) corresponding to VDM's mk-Name(Body). Body in Prolog */
/* is represented by a list of Slot-Value pairs. */

init_comp(Name, Lsn, Lsv, str(Name,Comp)) :-
 init_c(Lsn, Lsv, Comp),!.
init_c([L|Lsn], [V|Lsv], [c(L,V)| Comp]) :-
 init_c(Lsn, Lsv, Comp),!.
init_c([], [], []).

/* put_comp(Comp, Slot_name, Value, NewComp): */
/* post: NewComp = Comp except Slot_name(Comp) = Value */

put_comp(str(Name,[c(N,Old_V)|R]), Name, N, V, str(Name, [c(N,V)|R])) :- !.
put_comp(str(Name,[c(M,W)|R]), Name, N, V, str(Name, [c(M,W)|R1])) :-
 put_comp(str(Name,R), Name, N, V, str(Name,R1)),!.

/* get_comp(Comp, Slot_name, Value): */
/* post: Value = Slot_name(Comp) */

get_comp(str(Name, Body), Name, Slot_name, Value):-
ellement_of_set(c(Slot_name, Value), Body),!.
/******************** MAP *******************/
/* To ensure map integrity we inbuild into the constructor the
 condition that each domain element maps to a unique range */

/* init_map(Map) */
/* post: Map is an empty map */
init_map([]).

/* overwrite_map(Map, Dom, Value, NewMap): */
/* post: NewMap = Map + [Dom -> Value] */
overwrite_map(Map, Dom, Value, NewMap): -
 dom_map(Map, DomM),
 element_of_set(Dom, DomM),
 undo(Map, Dom, Value, NewMap),!.
overwrite_map(Map, Dom, Value, NewMap) :- /* Dom is a new dom value */
 concat_seq([m(Dom, Value)], Map, NewMap),!.
undo([m(Dom,_)|T], Dom, Value, [m(Dom, Value)|T]).
undo([X|T], Dom, Value, [X|T1]) :-
 undo(T, Dom, Value, T1),!.

/* apply_map(Map, Dom, Value): */
/* post: Value = Map(Dom) */
apply_map(Map, Dom, Value):-
 element_of_set(m(Dom, Value), Map),!.

/* dom_map(Map, Dom_Map): */
/* post: Dom_Map = dom(Map) */
dom_map([], []).
dom_map([m(D,_)|T], [D|DT]) :-
 dom_map(T, DT),!.

/* ran_map(Map, Ran_Map): */
/* post: Ran_Map = ran(Map) */
ran_map([], []).
ran_map([m(_,R)|T], RT) :-
 element_of_set(m(_,R), T),
 ran_map(T, RT),!.
ran_map([m(_,R)|T], [R|RT]) :-
 ran_map(T, RT),!.

427
/* THE PLANNER PROTOTYPE ***/
/* N.B.
(1) This planner can be made much more efficient with some simple
 changes:
 - The whole partial plan is 'carried' around in the achieve
 procedures below. The non-changeable bit - the planning problem
 itself, including all the action representations, should be made
 into global data by allowing it to be asserted as Prolog facts.
 - Some of the procedures in the ACHIEVE operations could be
 shuffled around to increase the speed of planning.
(2) The top level loop is called from the drivers written
 separately for each World (below we give one for the Blocks
 World, and one for the Painting World).
(3) Note one small change: although we used the sequence to model
 a literal, Prolog has as a data structure the literal itself,
 which we use instead: thus '[grasp,a]' is represented as
 'grasp(a)'. In fact since literals are propositions, they
 could be represented by single identifiers. To help future
 extension of the planner to accept literals with parameters,
 we will stick to Prolog's literal structure.
(4) The prototype simply spews out a correct plan structure.
 Procedures are needed to present the completed plan to the user. */

continue_planning :-
 retract(storedplan(Level, completed, PP)),
 nl,write('finished'),nl,write(PP),!.

continue_planning :-
 /* rather than simply retracting the first plan, one can write a
 heuristic function to pick the 'best' one to expand */
 retract(storedplan(Level, partial, PP)),
 get_comp(PP, partial_plan, ps, Ps),
 /* rather than simply picking the first goal in the unsolved (Ps),
 one can write heuristic function to pick the 'best' one to expand */
 element_of_set(Gi, Ps),
 achieve_all_ways(PP, Gi, Level),
 continue_planning.

continue_planning :- nl,write('**no plans left**').

428
/* This is the procedure that generates all the plans - NOTE
that it does NOT generate all plans possible, for efficiency
reasons, and so it will not solve some problems which have a
solution. To make it generate all plans, the last clause of
the first rule should finish with 'fail'. In this case, the
user will have to add heuristics to the choice mechanisms
to stave off an explosion of plans. */

achieve_all_ways(PPO, Gi, Level) :-

write(' in 1 '),
achieve1(PPO, Gi, Plan),
nl,write('Achieve1 Score '),
Level1 is Level +1,
score(Plan, Score),
write(Score),write(Level1),
assert(storedplan(Level1, Score, Plan)).

achieve_all_ways(PPO, Gi, Level) :-

write(' in 2 '),
achieve2(PPO, Gi, Plan),
nl,write('Achieve2 Score '),
Level1 is Level +1,
score(Plan, Score),
write(Score),write(Level1),nl,
assert(storedplan(Level1, Score, Plan)),
fail.

achieve_all_ways(_, _, _).

/* a plan's 'score' is here simply 'completed' or 'partial'. */
score(Plan, completed) :-
get_comp(Plan, partial_plan, ps, []).
score(Plan, partial).
init(PPI, PPO) :-
 get_comp(PPI, planning_problem, i, IPP), /* IPP = i(PPI) */
 get_comp(PPI, planning_problem, g, GPP), /* GPP = g(PPI) */
 init_comp(action, [name,pre,add,del], [init,[],IPP,[]], INIT),
 init_comp(action, [name,pre,add,del], [goal, GPP,[],[]], GOAL),
 init_map(OOS),
 overwrite_map(OS, init, INIT, OS1),
 overwrite_map(OS1, goal, GOAL, OS2),
 make_goal_instances(goal, GPP, GIS),
 initPO(Ts),
 init_comp(partial_plan, [pp,os,ts,ps,as], [PPI,OS2,Ts,GIs,[]], PPO).

achieve1(PlanI, Gi, PlanO) :-
 get_comp(PlanI, partial_plan, os, Os),
 get_comp(PlanI, partial_plan, ts, Ts),
 get_comp(PlanI, partial_plan, ps, Ps),
 get_comp(PlanI, partial_plan, as, As),
 element_of_set(Gi, Ps),

 dom_map(Os, DomOs),
 element_of_set(A, DomOs),
 achieve(Os,Ts,A,Gi, Ts_new),
 minus_set(Ps, [Gi], Ps_new),
 union_set(As, [Gi], As_new),
 put_comp(PlanI, partial_plan, ts, Ts_new, Plan1),
 put_comp(PlanI, partial_plan, ps, Ps_new, Plan2),
 put_comp(Plan2, partial_plan, as, As_new, PlanO).

achieve2(PlanI, Gi, PlanO) :-
 get_comp(PlanI, partial_plan, pp, PP),
 get_comp(PlanI, partial_plan, os, Os),
 get_comp(PlanI, partial_plan, ts, Ts),
 get_comp(PlanI, partial_plan, ps, Ps),
 get_comp(PlanI, partial_plan, as, As),
 element_of_set(Gi, Ps), /* pre-condition */

 dom_map(Os, DomOs), /* post-condition */
 newid(DomOs, NewA),
 add_node(NewA,Ts, Ts2),
 get_comp(PP,planning_problem, as, ASpp),
 element_of_set(Action, ASpp),
 overwrite_map(Os,NewA,Action, Os_new),

 achieve(Os_new,Ts2,NewA,Gi, Ts3),
 for_all_elSIO(As, declobber(Os_new,NewA), Ts3, Ts_new),

 get_comp(Action,action,pre, PreA),

430
make_goal_instances(NewA, PreA, GS),
minus_set(Ps, [Gi], Ps_new1),
union_set(Ps_new1, GS, Ps_new2),
union_set(As, [Gi], As_new),
put_comp(Plan1, partial_plan, os, Os_new, Plan1),
put_comp(Plan1, partial_plan, ts, Ts_new, Plan2),
put_comp(Plan2, partial_plan, ps, Ps_new2, Plan3),
put_comp(Plan3, partial_plan, as, As_new, Plan0).
achieve(\text{Os}, \text{Ts}, \text{A}, \text{GI}, \text{ New} _\text{Ts}) :-
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, ai, O}),
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, gi, P}),
\text{apply$_\text{map}$(\text{Os}, \text{A}, \text{ ActionA}),
\text{get$_\text{comp}$(ActionA, action$_\text{add}, \text{ AddA},
\text{element$_\text{of$_\text{set}$(P, \text{ AddA}),}
/* \text{P is in A.add} */
\text{make$_\text{before}$(A, O, \text{Ts}, \text{ Ts1}),}
/* \text{before(A, O, Ts1) */
\text{dom$_\text{map}$(\text{Os}, \text{ DomOs}),
\text{for$_\text{all$_\text{els}10$(DomOs, declobber$_\text{achieve}$(P, A, O, \text{Os}), \text{ Ts1}, \text{ New} _\text{Ts}),

declobber$_\text{achieve}$(P, A, O, \text{Os}, O, \text{Ts}, \text{ Ts}) :- !. /* \text{C = O V */
declobber$_\text{achieve}$(P, A, O, \text{Os}, A, \text{Ts}, \text{ Ts}) :- !. /* \text{C = A V */
declobber$_\text{achieve}$(P, A, O, \text{Os}, C, \text{Ts}, \text{ Ts}) :-
\text{before(O, C, Ts), !.} /* \text{before(O, C, Ts) V */
declobber$_\text{achieve}$(P, A, O, \text{Os}, C, \text{Ts}, \text{ Ts}) :-
\text{before(C, A, Ts), !.} /* \text{before(C, A, Ts) V */
declobber$_\text{achieve}$(P, A, O, \text{Os}, C, \text{Ts}, \text{ Ts}) :-
\text{apply$_\text{map}$(\text{Os}, C, \text{ CA}),
\text{get$_\text{comp}$(CA, action$_\text{del}, \text{ CAD),
\text{not(element$_\text{of$_\text{set}(P, CAD))}, !.} /* \text{not(p in Os(C).del) */
declobber$_\text{achieve}$(P, A, O, \text{Os}, C, \text{Ts}, \text{ New} _\text{Ts}) :-
\text{make$_\text{before}$(O, C, Ts, \text{ New} _\text{Ts).} /* \text{make before(O, C, Ts) */
declobber$_\text{achieve}$(P, A, O, \text{Os}, C, \text{Ts}, \text{ New} _\text{Ts}) :-
\text{make$_\text{before}$(C, A, Ts, \text{ New} _\text{Ts).} /* \text{make before(C, A, Ts) */

/* \text{decclobber called from ACHIEVE2.. */

declobber(\text{Os}, \text{NewA}, \text{GI}, \text{Ts}, \text{ Ts}) :-
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, ai, C),
\text{before(C, NewA, Ts), !.}
declobber(\text{Os}, \text{NewA}, \text{GI}, \text{Ts}, \text{ Ts}) :-
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, gi, Q),
\text{apply$_\text{map}$(\text{Os}, \text{NewA, Os$_\text{NewA}),
\text{get$_\text{comp}$(Os$_\text{NewA}, action$_\text{del}, \text{ Del$_\text{Os$_\text{NewA}),
\text{not(element$_\text{of$_\text{set}(Q, Del$_\text{Os$_\text{NewA}))}, !.}
declobber(\text{Os}, \text{NewA}, \text{GI}, \text{Ts}, \text{ Ts}) :-
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, ai, C),
\text{get$_\text{comp}$(GI, goal$_\text{instance} \text{, gi, Q),
\text{element$_\text{of$_\text{set}(W, Os)),
\text{before(NewA, W, Ts),
\text{before(W, C, Ts),
\text{apply$_\text{map}$(\text{Os}, W, \text{ Os$_\text{W}),
\text{get$_\text{comp}$(Os$_\text{W}, action$_\text{add}, \text{ add$_\text{Os$_\text{NewA),
\text{element$_\text{of$_\text{set}(Q, add$_\text{Os$_\text{W}), !.}

\text{newid(D, act(Y)) :-
\text{element$_\text{of$_\text{set}(act(X), D),
Y \text{ is X+1,}

432
not(element_of_set(act(Y), D)),
!.
newid(_, act(1)).
/* Implementation of Partial Ordering */

/* A is already before 0 */
make_before(A,0,Ts, Ts) :-
 before(A, 0, Ts), !.
/* otherwise put in constraint.. */
make_before(A,0,Ts, [ARC|Ts]) :-
 poss_before(A,0,Ts),
 init_comp(arc, [source,dest], [A,0], ARC), !.
poss_before(A,0,Ts) :-
 not(A=0),
 not(before(0,A,Ts)).

before(A,0,Ts) :-
 init_comp(arc, [source,dest], [A,0], ARC),
 element_of_set(ARC, Ts), !.
before(A,0,Ts) :-
 get_nodes(Ts, Nodes),
 element_of_set(Y, Nodes),
 init_comp(arc, [source,dest], [A,Y], ARC),
 element_of_set(ARC, Ts),
 before(Y,0,Ts), !.

get_nodes([], []).
get_nodes([Arc|R], S) :-
 get_comp(Arc,arc,source, Val1),
 get_comp(Arc,arc,dest, Val2),
 get_nodes(R, S1),
 union_set([Val1,Val2],S1, S), !.

add_node(NewA,Ts, [ARC1,ARC2|Ts]) :-
 init_comp(arc, [source,dest], [init,NewA], ARC1),
 init_comp(arc, [source,dest], [NewA,goal], ARC2).

initPO([Ts]) :-
 init_comp(arc, [source,dest], [init,goal], Ts).
/* ************ for all *************/
/* post: for_all_els(Some_set, Proc) is true
 iff for all X in Some_set : Proc(X) is true */
for_all_els([], Proc) :- !.
for_all_els([E|L], Proc) :-
 Proc =.. OL,
 concat_seq(OL,[E], OL1),
 ProcE =.. OL1,
 call(ProcE),
 for_all_els(L, Proc),!.
*/

/* ************ for all *************/
/* post: for_all_els(Some_set, Proc, I,0) is true
 iff for all X in Some_set : Proc(X,I,0) is true
This is a simple generalisation of the above which allows
an argument of Proc to change as each instance of Some_set
is checked */
for_all_elsIO([], _, I,I) :- !.
for_all_elsIO([E|L], Proc,I,0) :-
 Proc =.. OL,
 concat_seq(OL,[E,I,I1], OL1),
 ProcE =.. OL1,
 call(ProcE),
 for_all_elsIO(L, Proc, I1, 0),!.

/************ make_goal_instances(A, Gs, Gi) ************/
/* pre: Gs is a literal set, A is an action identifier */
/* post: Gi = \{mk-Goal_instances(g,A) : g is in Gs\} */
make_goal_instances(Action_Id, [G|G_rest], [Gi|Gi_rest]) :-
 init_comp(goal_instance, [gi, ai], [G, Action_Id], Gi),
 make_goal_instances(Action_Id, G_rest, Gi_rest),!.
make_goal_instances(_, [], []).
startblocks :-

/* This problem is the one built up as an example in the early part of chapter 6, and in Exercise 6.3. This first part of the program collects up the action representations, and computes the initial plan. Below we only list only a few Block's World actions; the reader is invited to write the rest (but see efficiency note at the beginning of the prototype). */

init_comp(action, [name,pre,add,del],
[grasp(a),
 [clear_top(a),gripper_free],
 [gripper_grasps(a)],
 [clear_top(a),gripper_free]],
Action1),
init_comp(action, [name,pre,add,del],
[liftup(a,b),
 [gripper_grasps(a), on(a,b)],
 [lifted_up(a), clear_top(b)],
 [on(a,b)]],
Action2),
init_comp(action, [name,pre,add,del],
[liftup(a,table),
 [gripper_grasps(a), on(a,table)],
 [lifted_up(a)],
 [on(a,table)]],
Action3),
init_comp(action, [name,pre,add,del],
[put_down(a,c),
 [Lifted_up(a), clear_top(c)],
 [on(a,c), gripper_free, clear_top(a)],
 [lifted_up(a), gripper_grasps(a), clear_top(c)]],
Action4),
init_comp(action, [name,pre,add,del],
[put_down(a,table),
 [lifted_up(a)],
 [on(a,table), gripper_free],
 [lifted_up(a),gripper_grasps(a)]],
Action5),
/* form planning problem .. */
init_comp(planning_problem, [as,i,g],
[[Action1, Action2, Action3, Action4, Action5],
[on(a,b),on(c,table),on(b,table),on(d,table),
clear_top(d),clear_top(a),clear_top(c),gripper_free],
[on(a,c),clear_top(b)]]),
PPI),

436
/* execute the initial partial plan operator as specified in VDM */
init(PPI, PPO),
assert(storedplan(1,partial,PPO)),
continue_planning.
startpaint :-

/* This is the Painting World as described in chapter 5 and
chapter 6. */

init_comp(action, [name,pre,add,del],
 [paintceiling,
 [haveladder, functionalladder, havepaint],
 [paintedceiling],
 []],
 Action1),
init_comp(action, [name,pre,add,del],
 [paintwall,
 [havepaint, paintedceiling],
 [paintedwall],
 []],
 Action2),
init_comp(action, [name,pre,add,del],
 [paintedladder,
 [haveladder, havepaint],
 [paintedladder],
 [functionalladder]],
 Action3),
init_comp(action, [name,pre,add,del],
 [getpaint,
 [havecreditcard],
 [havepaint],
 []],
 Action4),
init_comp(action, [name,pre,add,del],
 [getladder,
 [havecreditcard, ownlargecar],
 [haveladder, functionalladder],
 []],
 Action5),

/* form planning problem .. */
init_comp(planning_problem, [as,i,g],
 [[Action1, Action2, Action3, Action4, Action5],
 [havecreditcard, ownlargecar],
 [paintedladder, paintedceiling, paintedwall]],
 PPI),
/* execute the initial partial plan operator as specified in VDM */
init(PPI, P0),
/* put it in a global store */
 assert(storedplan(1,partial,P0)),
/* sstart planning loop */
 continue_planning.
/* Planner Output:

This is the partial plan (pretty printed) that is output when the planner is run with the input blocks problem.

*/

str(partial_plan, [

 c(pp,str(planning_problem,[

 c(as,[
 str(action,[c(name,grasp(a)),
 c(pre,[clear_top(a),gripper_free]),
 c(add,[gripper_grasps(a)]),
 c(del,[clear_top(a),gripper_free]]),

 str(action,[c(name,liftp(a,b)),
 c(pre,[gripper_grasps(a),on(a,b)]),
 c(add,[lifted_up(a),clear_top(b)]),
 c(del,[on(a,b)]))],

 str(action,[c(name,liftp(a,table)),
 c(pre,[gripper_grasps(a),on(a,table)]),
 c(add,[lifted_up(a)]),c(del,[on(a,table)]))],

 str(action,[c(name,put_down(a,c)),
 c(pre,[lifted_up(a),clear_top(c)]),
 c(add,[on(a,c),gripper_free,clear_top(a)]),
 c(del,[lifted_up(a),gripper_grasps(a),clear_top(c)]))],

 str(action,[c(name,put_down(a,table)),
 c(pre,[lifted_up(a)]),
 c(add,[on(a,table),gripper_free]),
 c(del,[lifted_up(a),gripper_grasps(a)]))],

 c(i,[on(a,b),on(c,table),on(b,table),on(d,table),clear_top(d),
 clear_top(a),clear_top(c),gripper_free]),
 c(g,[on(a,c),clear_top(b)]))],

 c(os,[

 m(act(3),str(action,[c(name,grasp(a)),
 c(pre,[clear_top(a),gripper_free]),
 c(add,[gripper_grasps(a)]),
 c(del,[clear_top(a),gripper_free]]),

 m(act(2),str(action,[c(name,liftup(a,b)),
 c(pre,[gripper_grasps(a),on(a,b)]),
 c(add,[lifted_up(a),clear_top(b)]))},

439
c(del,[on(a,b)])),
m(act(1),str(action,[c(name,put_down(a,c)),
c(pre,[lifted_up(a),clear_top(c)]),
c(add,[on(a,c),gripper_free,clear_top(a)]),
c(del,[lifted_up(a),gripper_grasps(a),clear_top(c)]))],
m(goal,str(action,[c(name,goal)],
c(pre,[on(a,c),clear_top(b)]),c(add,[]),c(del,[]))),
m(init,str(action,[c(name,init)],c(pre,[]),
c(add,[on(a,b),on(c,table),on(b,table),on(d,table),
clear_top(d),clear_top(a),clear_top(c),gripper_free]),
c(del,[]))]),

(tg,[
str(arc,[c(source,act(3)),c(dest,act(2))]),
str(arc,[c(source,init),c(dest,act(3))]),
str(arc,[c(source,act(3)),c(dest,goal)]),
str(arc,[c(source,act(2)),c(dest,act(1))]),
str(arc,[c(source,init),c(dest,act(2))]),
str(arc,[c(source,act(2)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,act(1))]),
str(arc,[c(source,act(1)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,goal)]),

(ps,[]),

(as,[
str(goal_instance, [c(gi,on(a,c)),c(ai,goal)]),
str(goal_instance,[c(gi,clear_top(b)),c(ai,goal)]),
str(goal_instance,[c(gi,lifted_up(a)),c(ai,act(1))]),
str(goal_instance,[c(gi,clear_top(c)),c(ai,act(1))]),
str(goal_instance,[c(gi,gripper_grasps(a)),c(ai,act(2))]),
str(goal_instance,[c(gi,on(a,b)),c(ai,act(2))]),
str(goal_instance,[c(gi,clear_top(a)),c(ai,act(3))]),
str(goal_instance,[c(gi,gripper_free),c(ai,act(3)))]))]

/* Planner Output:
This is the partial plan (pretty printed) that is output when the planner is run with the input Painting World problem. */

str(partial_plan,[
pp,str(planning_problem,[c(as,[
str(action,[
 c(name,paintceiling),
 c(pre,[haveladder,functionalladder,havepaint]),
 c(add,[paintedceiling]),c(del,[])]),
str(action,[
 c(name,paintwall),
 c(pre,[havepaint,paintedceiling]),
 c(add,[paintedwall]),c(del,[])],
str(action,[
 c(name,paintladder),
 c(pre,[haveladder,havepaint]),
 c(add,[paintedladder]),c(del,[functionalladder]])),
str(action,[
 c(name,getpaint),
 c(pre,[havecreditcard]),
 c(add,[havepaint]),c(del,[]))],
str(action,[
 c(name,gettalladder),
 c(pre,[havecreditcard,ownlargecar]),
 c(add,[haveladder,functionalladder]),c(del,[]))],
ic(i,[havecreditcard,ownlargecar]),
c(g,[paintedladder,paintedceiling,paintedwall]])))},
c(os,[
m(act(5), str(action,[c(name,getpaint),
 c(pre,[havecreditcard]),
 c(add,[havepaint]),c(del,[])])),
m(act(4), str(action,[c(name,gettalladder),
 c(pre,[haveladder,havepaint]),
 c(add,[haveladder,functionalladder]),c(del,[])])),
m(act(3), str(action,[c(name,paintwall),
 c(pre,[havepaint,paintedceiling]),
 c(add,[paintedwall]),c(del,[])])),
m(act(2), str(action,[c(name,paintceiling),
 c(pre,[haveladder,functionalladder,havepaint]),
 c(add,[paintedceiling]),c(del,[])])),
m(act(1), str(action,[c(name,paintladder),
 c(pre,[haveladder,havepaint]),
 c(add,[paintedladder]),c(del,[functionalladder]]))],
m(goal, str(action,[c(name,goal),
 c(pre,[paintedladder,paintedceiling,paintedwall]),
 c(add,[]),c(del,[]))],
m(init, str(action,[c(name,init),
 c(pre,[]),
 c(add,[havecreditcard,ownlargecar]),c(del,[])]))]

c(ts,[
 str(arc,[c(source,act(2)),c(dest,act(3))]),
 str(arc,[c(source,act(5)),c(dest,act(3))]),
 str(arc,[c(source,act(5)),c(dest,act(2))]),
 str(arc,[c(source,act(2)),c(dest,act(1))]),
 str(arc,[c(source,act(4)),c(dest,act(2))]),
 str(arc,[c(source,act(5)),c(dest,act(1))])]}
str(arc,[c(source,init),c(dest,act(5))]),
str(arc,[c(source,act(5)),c(dest,goal)]),
str(arc,[c(source,act(4)),c(dest,act(1))]),
str(arc,[c(source,init),c(dest,act(4))]),
str(arc,[c(source,act(4)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,act(3))]),
str(arc,[c(source,act(3)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,act(2))]),
str(arc,[c(source,act(2)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,act(1))]),
str(arc,[c(source,act(1)),c(dest,goal)]),
str(arc,[c(source,init),c(dest,goal)]),

c(ps,[]),

c(as,[
 str(goal_instance,[c(gi,paintedladder),c(ai,goal)]),
 str(goal_instance,[c(gi,paintedceiling),c(ai,goal)]),
 str(goal_instance,[c(gi,paintedwall),c(ai,goal)]),
 str(goal_instance,[c(gi,haveladder),c(ai,act(1))]),
 str(goal_instance,[c(gi,havepaint),c(ai,act(1))]),
 str(goal_instance,[c(gi,haveladder),c(ai,act(2))]),
 str(goal_instance,[c(gi,functionalladder),c(ai,act(2))]),
 str(goal_instance,[c(gi,havepaint),c(ai,act(2))]),
 str(goal_instance,[c(gi,havepaint),c(ai,act(3))]),
 str(goal_instance,[c(gi,paintedceiling),c(ai,act(3))]),
 str(goal_instance,[c(gi,havecreditcard),c(ai,act(4))]),
 str(goal_instance,[c(gi,ownlargecar),c(ai,act(4))]),
 str(goal_instance,[c(gi,havecreditcard),c(ai,act(5))])])}
Appendix 2: OBJ3 Prototypes

$obj\ MODE\ is\ sort\ Mode$.

\begin{verbatim}
 op for-sale : \rightarrow Mode .
 op under-offer : \rightarrow Mode .
\end{verbatim}

endo

$obj\ ADDRESS\ is\ sort\ Address$.

\begin{verbatim}
 ops adr1\ adr2\ adr3\ adr4 : \rightarrow Address .
\end{verbatim}

endo

$obj\ HOUSES-FOR-SALE\ is\ sort\ House-db$.

\begin{verbatim}
 protecting\ ADDRESS + MODE + BOOL .
 op empty : \rightarrow House-db .
 op insert : House-db Address \rightarrow House-db .
 op add-house : House-db Address Mode \rightarrow House-db .
 op delete-house : House-db Address \rightarrow House-db .
 op make-offer : House-db Address \rightarrow House-db .
 op is-on-market? : House-db Address \rightarrow Bool .
 op is-under-offer? : House-db Address \rightarrow Bool .
\end{verbatim}
var hs : House-db.

vars addr addr1 addr2 : Address.

var m : Mode.

eq insert(empty, addr) = add-house(empty, addr, for-sale).

eq insert(add-house(hs, addr1, m), addr2) =
 if addr1 == addr2 then add-house(hs, addr1, m)
 else add-house(insert(hs, addr2), addr1, m) fi.

eq delete-house(empty, addr) = empty.

eq delete-house(add-house(hs, addr1, m), addr2) =
 if addr1 == addr2 then hs
 else add-house(delete-house(hs, addr2), addr1, m) fi.

eq is-on-market?(empty, addr) = false.

eq is-on-market?(add-house(hs, addr1, m), addr2) =
 if addr1 == addr2 then true
 else is-on-market?(hs, addr2) fi.

eq is-under-offer?(empty, addr) = false.

eq is-under-offer?(add-house(hs, addr1, m), addr2) =
 if addr1 == addr2 then
 if m == under-offer then true
 else false fi
 else is-under-offer?(hs, addr2) fi.
eq make-offer(empty, addr) = empty .

eq make-offer(add-house(hs, addr1, m), addr2) =

 if addr1 == addr2 then
 if m == for-sale then
 add-house(delete-house(hs, addr1), addr1, under-offer)
 else add-house(hs, addr1, m) fi
 else
 add-house(make-offer(hs, addr2), addr1, m) fi
 fi
end

*** === Now evaluate some expressions

reduce is-on-market?(insert(insert(empty,adr1),adr2),adr1) .
***> should be : true

reduce delete-house(insert(insert(empty,adr1),adr2),adr2) .
***> should be : add-house(empty,adr1,for-sale)

reduce delete-house(insert(insert(empty,adr1),adr2),adr3) .
***> should be :
***> add-house(add-house(empty,adr2,for-sale),adr1,for-sale)

reduce make-offer(insert(insert(empty,adr1),adr2),adr2) .
***> should be : add-house(add-house(empty,adr2,under-offer),adr1,for-sale)
obj PETROCHEMICAL is sort Chemical .

 ops pc1 pc2 pc3 pc4 pc5 : -> Chemical .
endo

*** ===========

obj TANK-2 is sorts NeTank Tank ErrTank .

subsort NeTank < Tank < ErrTank .

protecting PETROCHEMICAL + FLOAT + BOOL .

op new : -> Tank .

op add-chem : ErrTank Chemical Float -> ErrTank .

op fill : Tank Chemical Float -> NeTank .

op remove : Tank Float -> Tank .

op empty-tank : Tank -> Tank .

op change-pc : Tank Chemical Float -> ErrTank .

op error : -> ErrTank .

op alarm? : ErrTank -> Bool .

op is-empty? : Tank -> Bool .

op is-full? : Tank -> Bool .

op chem : NeTank -> Chemical .

op level : Tank -> Float .

op max-vol : -> Float .
vars c c1 c2 : Chemical.
vars q q1 q2 : Float.
eq add-chem(new, c, q) =
 if q == 0.0 then new
 else if q <= max-vol then fill(new, c, q)
 else error fi fi.
eq add-chem(fill(new, c1, q1), c2, q2) =
 if (c1 == c2) and ((q1 + q2) <= max-vol) then
 fill(new, c1, q1 + q2) else error fi.
eq add-chem(error, c, q) = error.
eq remove(new, q) = new.
eq remove(fill(new, c1, q1), q2) = if q1 > q2 then
 add-chem(new, c1, q1 - q2)
 else new fi.
eq empty-tank(new) = new.
eq empty-tank(fill(new, c, q)) = new.
eq change-pc(new, c, q) = add-chem(new, c, q).
eq change-pc(fill(new, c1, q1), c2, q2) =
 add-chem(empty-tank(fill(new, c1, q1)), c2, q2).
eq alarm?(new) = false.
eq alarm?(fill(new, c, q)) = false.
eq alarm?(error) = true.
eq is-empty?(new) = true.
eq is-empty?(fill(new, c, q)) = false.
eq is-full?(new) = false.
eq is-full?(fill(new, c, q)) = (q == max-vol).
eq chem(fill(new, c, q)) = c.
eq level(new) = 0.0.
eq level(fill(new, c, q)) = q.
eq max-vol = (100.0).

endo

*** ==== Now evaluate some expressions

reduce add-chem(add-chem(new,pc1,23.0),pc1,34.0).
***> should be : fill(new,pc1,57.0)

reduce add-chem(add-chem(new,pc1,45.0),pc1,88.0).
***> should be : error

reduce add-chem(add-chem(new,pc1,45.0),pc3,5.0).
***> should be : error

reduce remove(add-chem(new,pc1,33.0),22.0).
***> should be : fill(new,pc1,11.0)

reduce change-pc(add-chem(add-chem(new,pc1,11.0),pc1,22.0),pc4,63.0).
***> should be : fill(new,pc4,63.0)

reduce change-pc(add-chem(add-chem(new,pc1,11.0),pc1,22.0),pc4,63.0).
***> should be : fill(new,pc4,63.0)

448
reduce alarm? (add-chem (new, pc1, 23.0)) .
>>> should be: false

reduce alarm? (add-chem (new, pc1, 123.0)) .
>>> should be: true

reduce alarm? (add-chem (add-chem (new, pc1, 11.0), pc2, 22.0)) .
>>> should be: true

reduce is-empty? (add-chem (add-chem (new, pc1, 11.0), pc1, 22.0)) .
>>> should be: false

reduce is-full? (add-chem (add-chem (new, pc1, 11.0), pc1, 22.0)) .
>>> should be: false

reduce is-full? (add-chem (add-chem (new, pc1, 10.0), pc1, 90.0)) .
>>> should be: true

reduce empty-tank (add-chem (add-chem (new, pc1, 23.0), pc1, 34.0)) .
>>> should be: new

reduce chem (add-chem (add-chem (new, pc3, 52.0), pc3, 48.0)) .
>>> should be: pc3

reduce level (add-chem (add-chem (add-chem (new, pc2, 22.0), pc2, 33.0), pc2, 44.0)) .
>>> should be: 99.0
OBJ3 prototype of Petrochemical Plant Datastore

obj READING is sort Reading .

 protecting PETROCHEMICAL + FLOAT .

 op make : Chemical Float -> Reading .

 op p-chem : Reading -> Chemical .

 op amount : Reading -> Float .

 op smaller : Float Float -> Float [comm] .

 op larger : Float Float -> Float [comm] .

 var c : Chemical .

 vars q q1 q2 : Float .

 eq p-chem(make(c, q)) = c .

 eq amount(make(c, q)) = q .

 eq smaller(q1, q2) = if q1 > q2 then
 q2
 else q1 fi .

 eq larger(q1, q2) = if q1 > q2 then
 q1
 else q2 fi .

endo

*** ===
obj TANK-DETECTOR is sort Name .

ops dev-1 dev-2 dev-3 dev-4 dev-5 : -> Name .
end

*** --

obj DATASTORE is sorts Datastore NeDatastore .

protecting READING + TANK-DETECTOR + TANK-2 + BOOL + NAT .

extending PETROCHEMICAL + FLOAT .

subsort NeDatastore < Datastore .

op empty : -> Datastore .

op add : Datastore Name Reading -> NeDatastore .

op isolate : Datastore Name -> Datastore .

op global-max : NeDatastore -> Float .

op global-min : NeDatastore -> Float .

op max-level : NeDatastore Name -> Float .

op min-level : NeDatastore Name -> Float .

op any-values? : Datastore Name -> Bool .

op pc-contents : NeDatastore Name -> Chemical .

op pc-level : NeDatastore Name -> Float .

op full-warning? : Datastore -> Bool .

op count : Datastore Name -> Nat .

op total : Datastore -> Nat .

var s : Datastore .

vars n n1 n2 : Name .

var r : Reading .
eq any-values?(empty, n) = false .

eq any-values?(add(s, n2, r), n1) = if n1 == n2 then true
else any-values?(s, n1) fi .

eq full-warning?(empty) = false .

eq full-warning?(add(s, n, r)) =
 if amount(r) == max-vol then true
 else full-warning?(s) fi .

cq pc-contents(add(s, n2, r), n1) =
 (if n1 == n2 then p-chem(r)
 else pc-contents(s, n1) fi)
if any-values?(add(s, n2, r), n1) .

cq pc-level(add(s, n2, r), n1) =
 (if n1 == n2 then amount(r)
 else pc-level(s, n1) fi)
if any-values?(add(s, n2, r), n1) .

eq isolate(empty, n) = empty .

eq isolate(add(s, n2, r), n1) =
 if n1 == n2 then add(isolate(s, n1), n1, r)
 else isolate(s, n1) fi .

eq global-max(add(s, n, r)) =
 if s == empty then amount(r)
 else larger(amount(r), global-max(s)) fi .

452
eq \text{global-min}(\text{add}(s, n, r)) = \\
 \text{if } s = \text{empty} \text{ then } \text{amount}(r) \\
 \text{else } \text{smaller}(\text{amount}(r), \text{global-min}(s)) \text{ fi}.

cq \text{max-level}(\text{add}(s, n2, r), n1) = \\
 \text{global-max}(\text{isolate}(\text{add}(s, n2, r), n1)) \\
 \text{if } \text{any-values?}(\text{add}(s, n2, r), n1).

cq \text{min-level}(\text{add}(s, n2, r), n1) = \\
 \text{global-min}(\text{isolate}(\text{add}(s, n2, r), n1)) \\
 \text{if } \text{any-values?}(\text{add}(s, n2, r), n1).

eq \text{count}(\text{empty}, n) = 0 .

eq \text{count}(\text{add}(s, n2, r), n1) = \\
 \text{if } n1 = n2 \text{ then } 1 + \text{count}(s, n1) \\
 \text{else } \text{count}(s, n1) \text{ fi}.

eq \text{total}(\text{empty}) = 0 .

eq \text{total}(\text{add}(s, n, r)) = 1 + \text{total}(s).

endo

*** === Now evaluate some expressions

\text{reduce} \text{isolate}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{empty}, \text{dev-1}, \text{make}(\text{pc1}, 11.0)), \text{dev-2}, \text{make}(\text{pc2}, 22.0)), \text{dev-3}, \text{make}(\text{pc3}, 33.0)), \text{dev-4}, \text{make}(\text{pc4}, 44.0)), \text{dev-1}, \text{make}(\text{pc1}, 41.0)), \text{dev-2}, \text{make}(\text{pc2}, 12.0)), \text{dev-3}, \text{make}(\text{pc3}, 13.0)), \text{dev-1}) .

***\> should be: \text{add}(\text{add}(\text{empty}, \text{dev-1}, \text{make}(\text{pc1}, 11.0)), \text{dev-1}, \text{make}(\text{pc1}, 41.0))

\text{reduce} \text{isolate}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{add}(\text{empty}, \text{dev-1}, \text{make}(\text{pc1}, 11.0)), \text{dev-2}, \text{make}(\text{pc2}, 22.0)), \text{dev-3}, \text{make}(\text{pc3}, 33.0)), \text{dev-4}, \text{make}(\text{pc4}, 44.0)), \text{dev-1}, \text{make}(\text{pc1}, 41.0)), \text{dev-2}, \text{make}(\text{pc2}, 12.0)), \text{dev-3}, \text{make}(\text{pc3}, 13.0)), \text{dev-4}) .

***\> should be: \text{add}(\text{empty}, \text{dev-4}, \text{make}(\text{pc4}, 44.0))

453
reduce any-values?(add(add(add(add(add(add(empty,dev-1,make(pc1,11.0)),
 dev-2,make(pc2,22.0)), dev-3,make(pc3,33.0)),
 dev-4,make(pc4,44.0)), dev-1,make(pc1,41.0)),
 dev-2,make(pc2,12.0)), dev-3,make(pc3,13.0)), dev-4).

***> should be : true

reduce full-warning?(add(add(empty,dev-1,make(pc1,100.0)),
 dev-2,make(pc2,40.0))).

***> should be : true

reduce pc-contents(add(add(empty,dev-1,make(pc1,100.0)),
 dev-2,make(pc2,40.0)),dev-1).

***> should be : pc1

reduce pc-level(add(add(add(add(empty,dev-1,make(pc1,11.0)),
 dev-2,make(pc2,22.0)), dev-3,make(pc3,33.0)),
 dev-4,make(pc4,44.0)), dev-1,make(pc1,41.0)),
 dev-2,make(pc2,12.0)), dev-3,make(pc3,13.0)), dev-2).

***> should be : 12.0

reduce global-max(add(add(add(add(add(empty,dev-1,make(pc1,11.0)),
 dev-2,make(pc2,22.0)), dev-3,make(pc3,33.0)),
 dev-4,make(pc4,44.0)), dev-1,make(pc1,41.0)),
 dev-2,make(pc2,12.0)), dev-3,make(pc3,13.0))).

***> should be : 44.0

reduce global-min(add(add(add(add(add(empty,dev-1,make(pc1,11.0)),
 dev-2,make(pc2,22.0)), dev-3,make(pc3,33.0)),
 dev-4,make(pc4,44.0)), dev-1,make(pc1,41.0)),
 dev-2,make(pc2,12.0)), dev-3,make(pc3,13.0))).

***> should be : 11.0

reduce max-level(add(add(add(add(add(empty,dev-1,make(pc1,11.0)),
 dev-2,make(pc2,22.0)), dev-3,make(pc3,33.0)),
 dev-4,make(pc4,44.0)), dev-1,make(pc1,41.0)),
 dev-2,make(pc2,12.0)), dev-3,make(pc3,13.0)), dev-3).

***> should be : 33.0

454
reduce min-level(add(add(add(add(add(\empty, dev-1, make(pc1,11.0)),
 dev-2, make(pc2,22.0)), dev-3, make(pc3,33.0)),
 dev-4, make(pc4,44.0)), dev-1, make(pc1,41.0)),
 dev-2, make(pc2,12.0)), dev-3, make(pc3,13.0)), dev-3) .

*** should be : 13.0

reduce count(add(add(add(add(add(\empty, dev-1, make(pc1,11.0)),
 dev-2, make(pc2,22.0)), dev-3, make(pc3,33.0)),
 dev-4, make(pc4,44.0)), dev-1, make(pc1,41.0)),
 dev-2, make(pc2,12.0)), dev-3, make(pc3,13.0)), dev-4) .

*** should be : 1

reduce total(add(add(add(add(add(\empty, dev-1, make(pc1,11.0)),
 dev-2, make(pc2,22.0)), dev-3, make(pc3,33.0)),
 dev-4, make(pc4,44.0)), dev-1, make(pc1,41.0)),
 dev-2, make(pc2,12.0)), dev-3, make(pc3,13.0))) .

*** should be : 7
OBJ3 prototype of Symbol Table Manager

obj IDENTIFIER is sort Identifier .

ops x y z s t : -> Identifier .
endo

*** ===============================

obj ATTRIBUTE is sort Attribute .

ops real integer char boolean : -> Attribute .
endo

*** ===============================

obj SYMBOL-TABLE is sorts Symbol-table Ne-Symbol-table .

subsort Ne-Symbol-table < Symbol-table .

protecting IDENTIFIER + ATTRIBUTE + BOOL .

op init : -> Symbol-table .

op enter-block : Symbol-table -> Ne-Symbol-table .

op add : Symbol-table Identifier Attribute -> Ne-Symbol-table .

op insert : Symbol-table Identifier Attribute -> Ne-Symbol-table .

op retrieve : Ne-Symbol-table Identifier -> Attribute .

op is-in-block? : Symbol-table Identifier -> Bool .

op is-in-table? : Symbol-table Identifier -> Bool .
var st : Symbol-table.

vars id1 id2 : Identifier.

vars a1 a2 : Attribute.

eq insert(init, id1, a1) = add(enter-block(init), id1, a1).

eq insert(enter-block(st), id1, a1) = add(enter-block(st), id1, a1).

eq insert(add(st, id1, a1), id2, a2) =

 if id1 == id2 then add(st, id1, a1)

 else add(insert(st, id2, a2), id1, a1) fi.

eq leave-block(enter-block(st)) = st.

eq leave-block(add(st, id1, a1)) = leave-block(st).

eq is-in-block?(init, id1) = false.

eq is-in-block?(enter-block(st), id1) = false.

eq is-in-block?(add(st, id1, a1), id2) = if id1 == id2 then true

 else is-in-block?(st, id2) fi.

eq is-in-table?(init, id1) = false.

eq is-in-table?(enter-block(st), id1) = is-in-table?(st, id1).

eq is-in-table?(add(st, id1, a1), id2) =

 if id1 == id2 then true

 else is-in-table?(st, id2) fi.
cqe retrieve(enter-block(st), id1) =
 retrieve(st, id1) if is-in-table?(st, id1) .

cqe retrieve(add(st, id1, a1), id2) =
 (if id1 == id2 then a1 else retrieve(st, id2) fi)
 if is-in-table?(add(st, id1, a1), id2) .
endo

*** === Now evaluate some expressions

reduce insert(enter-block(insert(init,x,real)),y,char) .

***> should be : add(enter-block(add(enter-block(init),x,real)),y,char)

reduce is-in-block?(insert(enter-block(insert(init,x,real)),y,char),x) .

***> should be : false

reduce is-in-block?(insert(enter-block(insert(init,x,real)),y,char),y) .

***> should be : true

reduce is-in-table?(insert(enter-block(insert(init,x,real)),y,char),x) .

***> should be : true

reduce is-in-table?(insert(enter-block(insert(init,x,real)),y,char),z) .

***> should be : false

reduce retrieve(insert(enter-block(insert(init,x,real)),y,char),x) .

***> should be : real

reduce leave-block(insert(enter-block(insert(init,x,real)),y,char)) .

***> should be : add(enter-block(init),x,real)

*** The PROPS or theory module ELEM imposes no requirement
*** apart from the need for a sort

th ELEM is

 sort Element .

endth

*** ------------------------------

*** Simple parameterised list

obj LIST[E :: ELEM] is

 sorts List NeList .

 subsort NeList < List .

 op # : -> List .

 op _ . _ : Element List -> NeList .

 op is-in? _ _ : Element List -> Bool .

459
vars e e1 e2 : Element
vars s s1 s2 : List

*** Axioms for list concatenation:

eq # app s = s .

eq (e . s1) app s2 = (e . (s1 app s2)) .

*** Axioms for determining whether an element e1
*** is present in a list s

eq is-in? e1 # = false .

eq is-in? e1 (e2 . s) = (e1 == e2) or is-in? e1 s .

endo

*** --

*** Unconstrained triples

obj TRIPLE[S1 :: ELEM, S2 :: ELEM, S3 :: ELEM] is

 sort Triple .

 op < _ ; _ ; _ > : Element.S1 Element.S2 Element.S3 -> Triple .

 op 1-st _ : Triple -> Element.S1 .

 op 2-nd _ : Triple -> Element.S2 .

 op 3-rd _ : Triple -> Element.S3 .

 var a : Element.S1 .

 var b : Element.S2 .

 var c : Element.S3 .

 eq 1-st < a ; b ; c > = a .

 eq 2-nd < a ; b ; c > = b .

 eq 3-rd < a ; b ; c > = c .

 endo

*** ---

*** List of unconstrained triples

obj LIST-OF-TRIPLE[F :: ELEM, S :: ELEM, T :: ELEM] is

 protecting LIST[view to TRIPLE[F, S, T] is sort Element to Triple . endv] .

 endo

*** ---

on/off activation state

obj ACTIVATION is

 sort Activation .

 ops on off : -> Activation .

endo

*** ---------------------------------------

*** List of output neurons

obj OUTFO is

 protecting LIST-OF-TRIPLE[INT, INT, INT] *

 (sort List to Outfo ,

 op 1-st _ to value-of _ ,

 op 2-nd _ to weight _ ,

 op 3-rd _ to to-neuron _) .

 op fire-out _ _ : Int Outfo -> Outfo .

 var l : Outfo .

 vars m n p w : Int .

*** Axioms for fire-out:

 eq fire-out m # = # .

 eq fire-out m (< n ; w ; p > . l) =

 (< m ; w ; p > . (fire-out m l)) .

endo

*** ---------------------------------------
*** List of incoming neurons

obj INFO is

protecting LIST-OF-TRIPLE[INT, ACTIVATION, INT] *

(sort List to Info,
 sort NeList to NeInfo) .

op sum-active _ : Info -> Int .

op all-active? _ : NeInfo -> Bool .

op make-passive _ : Info -> Info .

op change-weight _ _ _ : Int Int Info -> Info .

var t : Triple .

var l : Info .

var a : Activation .

vars s, id1, m, n : Int .

*** Axioms for sum-active:

eq sum-active # = 0 .

eq sum-active (t . l) = if 2-nd t == on then 1-st t + sum-active l
 else sum-active l fi .

*** Axioms for all-active?:

eq all-active? (< n ; a ; m > . #) = a == on .

eq all-active? (< n ; a ; m > . l) = a == on and all-active? l .

*** Axioms for make-passive:

eq make-passive # = # .

eq make-passive (< n ; a ; m > . l) =
 (< n ; off ; m > . make-passive l) .
Axioms for change-weight:

```plaintext
eq\text{change-weight}\ s\ \text{id1}\ #\ =\ #\ .

eq\text{change-weight}\ s\ \text{id1}\ (<\ n\ ;\ a\ ;\ m\ >\ .\ l)\ =

\text{if}\ \text{id1}\ ==\ m\ \text{then}\ \text{l}\ \text{app}\ (<\ s\ ;\ \text{on}\ ;\ \text{id1}\ >\ .\ #)\\
\text{else}\ (\text{change-weight}\ s\ \text{id1}\ \text{l})\ \text{app}\ (<\ n\ ;\ a\ ;\ m\ >\ .\ #)\ \text{fi}\ .
```

Individual neuron as a 4-tuple

```plaintext
\text{obj}\ \text{NEURON}[\text{S1}\ ::\ \text{ELEM},\ \text{S2}\ ::\ \text{ELEM},\ \text{S3}\ ::\ \text{ELEM},\ \text{S4}\ ::\ \text{ELEM}]\ \text{is}

\text{sort}\ \text{Neuron}\ .

\text{op}\ <\ _\ ;\ _\ ;\ _\ ;\ _\ >\ :\ \text{Element.S1}\ \text{Element.S2}\ \text{Element.S3}\ 

\text{Element.S4}\ \rightarrow\ \text{Neuron}\ .

\text{op}\ \text{identifier}\ _\ :\ \text{Neuron}\ \rightarrow\ \text{Element.S1}\ .

\text{op}\ \text{threshold}\ _\ :\ \text{Neuron}\ \rightarrow\ \text{Element.S2}\ .

\text{op}\ \text{input}\ _\ :\ \text{Neuron}\ \rightarrow\ \text{Element.S3}\ .

\text{op}\ \text{output}\ _\ :\ \text{Neuron}\ \rightarrow\ \text{Element.S4}\ .

\text{var}\ a\ :\ \text{Element.S1}\ .

\text{var}\ b\ :\ \text{Element.S2}\ .

\text{var}\ c\ :\ \text{Element.S3}\ .

\text{var}\ d\ :\ \text{Element.S4}\ .
```

464
*** Axioms:

```plaintext
eq \text{identifier} \ < \ a \ ; \ b \ ; \ c \ ; \ d \ > \ = \ a .

\eq \text{threshold} \ < \ a \ ; \ b \ ; \ c \ ; \ d \ > \ = \ b .

\eq \text{input} \ < \ a \ ; \ b \ ; \ c \ ; \ d \ > \ = \ c .

\eq \text{output} \ < \ a \ ; \ b \ ; \ c \ ; \ d \ > \ = \ d .
```

endo

*** ------------------------------------

*** Neural network as a list of neurons

obj NEURAL-NETWORK is

```plaintext
protection\protect LIST[view\ to\ NEURON[\protect INT,\ \protect INT, view\ to\ INFO\ is\ sort\ Element\ to\ Info . endv, view\ to\ OUTFO\ is\ sort\ Element\ to\ Outfo . endv]
is\ sort\ Element\ to\ Neuron . endv] *

(sort\ List\ to\ Network)  .
```

```plaintext
op \text{sleep}_ -  : \text{Neuron} \rightarrow \text{Neuron} .

op \text{fire}_ -  : \text{Neuron} \rightarrow \text{Neuron} .

op \text{spread}_ - _  : \text{Neuron\ Network} \rightarrow \text{Network} .

op \text{spread-out}_ - _ -  : \text{Int\ Outfo\ Network} \rightarrow \text{Network} .

op \text{one-shot}_ - _ - _  : \text{Int\ Int\ Int\ Network} \rightarrow \text{Network} .

op \text{all-settled?}_ -  : \text{Network} \rightarrow \text{Bool} .

op \text{settle}_ -  : \text{Network} \rightarrow \text{Network} .
```
var a b w f v : Int .
var id1 id2 : Int .
var c : Info .
var d o : Outfo .
var n : Neuron .
var ns : Network .

*** Axiom for sleep:

eq sleep < a ; b ; c ; d > = < a ; b ; make-passive c ; d > .

*** Axiom for fire:

eq fire < a ; b ; c ; d > =

< a ; b ; c ; (fire-out (sum-active c) d) > .

*** Axiom for spread:

eq spread < id1 ; b ; c ; d > ns = spread-out id1 d ns .

*** Axioms for spread-out:

eq spread-out id1 # ns = ns .

eq spread-out id1 (< f ; w ; id2 > . o) ns =

(spread-out id1 o (one-shot id1 (w * f) id2 ns)) .

*** Axioms for one-shot:

eq one-shot id1 v id2 # = # .

eq one-shot id1 v id2 (< a ; b ; c ; d > . ns) =

if a == id2 then

(< id2 ; b ; (change-weight v id1 c) ; d > . ns)

else

(one-shot id1 v id2 ns) app (< a ; b ; c ; d > . #) fi .
*** Axioms for all-settled?:

eq all-settled? # = true .

eq all-settled? (n . ns) = if all-active? (input n) then false
 else all-settled? ns fi .

*** Axiom for settle:

eq settle # = # .

eq settle (n . ns) =

 if all-settled? (n . ns) then (n . ns)
 else
 (if all-active? (input n) and
 (threshold n <= sum-active (input n)) then
 settle ((spread (fire n) ns) app (sleep (fire n) . #))
 else
 (if all-active? (input n) then
 settle (ns app ((sleep n) . #))
 else settle (ns app (n . #)) fi)
 fi)
 fi .
endo

*** ---
obj EXAMPLE-NEURAL-NETWORK is

 protecting NEURAL-NETWORK .

 ops info1 info2 info3 info4 info5 : -> Info .
 ops outfo1 outfo2 outfo3 outfo4 outfo5 : -> Outfo .
 ops network-before network-after : -> Network .

 eq info1 = (< 1 ; on ; 0 > . #) .
 eq info2 = (< 0 ; on ; 0 > . #) .
 eq info3 = (< 0 ; off ; 1 > . (< 0 ; off ; 2 > . #)) .
 eq info4 = (< 0 ; off ; 1 > . (< 0 ; off ; 2 > . #)) .
 eq info5 = (< 0 ; off ; 3 > . (< 0 ; off ; 4 > . #)) .
 eq outfo1 = (< 0 ; 1 ; 3 > . (< 0 ; -1 ; 4 > . #)) .
 eq outfo2 = (< 0 ; -1 ; 3 > . (< 0 ; 1 ; 4 > . #)) .
 eq outfo3 = (< 0 ; 1 ; 5 > . #) .
 eq outfo4 = (< 0 ; 1 ; 5 > . #) .
 eq outfo5 = (< 0 ; 1 ; 0 > . #) .

 eq network-before =
 (< 1 ; -1 ; info1 ; outfo1 > .
 (< 2 ; -1 ; info2 ; outfo2 > .
 (< 3 ; -1 ; info3 ; outfo3 > .
 (< 4 ; -1 ; info4 ; outfo4 > .
 (< 5 ; -1 ; info5 ; outfo5 > . #))))))) .
eq network-after =
 settle (< 1 ; -1 ; info1 ; outfo1 >).
 (< 2 ; -1 ; info2 ; outfo2 >).
 (< 3 ; -1 ; info3 ; outfo3 >).
 (< 4 ; -1 ; info4 ; outfo4 >).
 (< 5 ; -1 ; info5 ; outfo5 >). #))))
 eq settled-before? = all-settled? network-before.
end

*** ---

*** ==== Now evaluate some expressions
reduce settled-before?.

***> should be : false
reduce settled-after?.

***> should be : true
reduce network-after.

*** should be:

```
< 3 ; -1 ; < 1 ; off ; 1 > . < 0 ; off ; 2 > . # ;
     < 1 ; 1 ; 5 > . # > .

< 2 ; -1 ; < 0 ; off ; 0 > . # ;
     < 0 ; -1 ; 3 > . < 0 ; 1 ; 4 > . # > .

< 4 ; -1 ; < -1 ; off ; 1 > . < 0 ; off ; 2 > . # ;
     < -1 ; 1 ; 5 > . # > .

< 1 ; -1 ; < 1 ; off ; 0 > . # ;
     < 1 ; 1 ; 3 > . < 1 ; -1 ; 4 > . # > .

< 5 ; -1 ; < 1 ; off ; 3 > . < -1 ; off ; 4 > . # ;
     < 0 ; 1 ; 0 > . # > . #
```

*** = =>'---