
PDDL2.2: The Language for the Classical Part of IPC-4
— extended abstract —

Stefan Edelkamp
Fachbereich Informatik
Baroper Str. 301, GB IV

44221 Dortmund, Germany
stefan.edelkamp@cs.uni-dortmund.de

Jörg Hoffmann
Institut für Informatik

Georges-K̈ohler-Allee, Geb. 52
79110 Freiburg, Germany

hoffmann@informatik.uni-freiburg.de

Introduction
The 3rd International Planning Competition, IPC-3, was run
by Derek Long and Maria Fox. The competition focussed
on planning in temporal and metric domains. For that pur-
pose, Fox and Long developed the PDDL2.1 language (Fox
& Long 2003), of which the first threelevelswere used in
IPC-3. Level 1 was the usual STRIPS and ADL planning,
level 2 added numeric variables, level 3 added durational
constructs.

In this document, we describe the language, named
PDDL2.2, used for formulating the domains used in the clas-
sical part of IPC-4. As the language extensions made for
IPC-3 still provide major challenges to the planning commu-
nity, the language extensions for IPC-4 are relatively mod-
erate. The first three levels of PDDL2.1 are interpreted as
an agreed fundament, and kept as the basis of PDDL2.2.
PDDL2.2 also inherits the separation into the three levels.
The language features added on top of PDDL2.1 arederived
predicates(into levels 1,2, and 3) andtimed initial literals
(into level 3 only). Both of these constructs are practically
motivated, and are put to use in some of the competition
domains. Details on the constructs are in the respective sec-
tions.

The next section discusses derived predicates, including a
brief description of their syntax, and the definition of their
semantics. The section after that does the same for timed
initial literals. Full details, including a BNF description of
PDDL2.2, can be found in a technical report (Edelkamp &
Hoffmann 2004).

Derived Predicates
Derived predicates have been implemented in several plan-
ning systems in the past, including e.g. UCPOP (Penberthy
& Weld 1992). They are predicates that are not affected by
any of the actions available to the planner. Instead, the pred-
icate’s truth values are derived by a set of rules of the form
if φ(x) then P (x). The semantics are, roughly, that an in-
stance of a derived predicate (a derived predicate whose ar-
guments are instantiated with constants; afact, for short) is
TRUE iff it can be derived using the available rules (more
details below). Under the name “axioms”, derived predi-
cates were a part of the original PDDL language defined by
McDermott (McDermott & others 1998) for the first plan-
ning competition, but they have never been put to use in a

competition benchmark (we use the name “derived predi-
cates” instead of “axioms” in order to avoid confusion with
safety conditions).

Syntax
The BNF definition of derived predicates involves just two
small modifications to the BNF definition of PDDL2.1:

<structure-def> ::= :derived−predicates

<derived-def>

The domain file specifies a list of “structures”. In
PDDL2.1 these were either actions or durational actions.
Now we also allow “derived” definitions at these points.

<derived-def> ::= (:derived <atomic
formula(term)> <GD>)

The “derived” definitions are the “rules” mentioned
above. They simply specify the predicateP to be de-
rived (with variable vectorx), and the formulaφ(x) from
which instances ofP can be concluded to be true. Syntacti-
cally, the predicate and variables are given by the<atomic
formula(term)> expression, and the formula is given
by <GD>(a “goal descrption”, i.e. a formula).

The BNF is more generous than what we actually allow
in PDDL2.2, respectively in IPC-4. We make a number of
restrictions to ensure that the definitions make sense and are
easy to treat algorithmically. We call a predicateP derived
if there is a rule that has a predicateP in its head; otherwise
we callP basic. The restrictions we make are the following.

1. The actions available to the planner do not affect the de-
rived predicates: no derived predicate occurs on any of
the effect lists of the domain actions.

2. If a rule defines thatP (x) can be derived fromφ(x), then
the variables inx are pairwise different (and, as the no-
tation suggests, the free variables ofφ(x) are exactly the
variables inx).

3. If a rule defines thatP (x) can be derived fromφ, then the
Negation Normal Form (NNF) ofφ(x) does not contain
any derived predicates in negated form.

The first restriction ensures that there is a separation be-
tween the predicates that the planner can affect (the basic
predicates) and those (the derived predicates) whose truth

values follow from the basic predicates. The second restric-
tion ensures that the rule right hand sides match the rule left
hand sides. Let us explain the third restriction. The NNF of a
formula is obtained by “pushing the negations downwards”,
i.e. transforming¬∀x : φ into ∃x : (¬φ), ¬∃x : φ into
∀x : (¬φ), ¬

∨
φi into

∧
(¬φi), and¬

∧
φi into

∨
(¬φi).

Iterating these transformation steps, one ends up with a for-
mula where negations occur only in front of atomic formulas
– predicates with variable vectors, in our case. The formula
contains a predicateP in negated formiff there is an oc-
curence ofP that is negated. By requiring that the formulas
in the rules (that derive predicate values) do not contain any
derived predicates in negated form, we ensure that there can
not be any negative interactions between applications of the
rules (see the semantics below).

An example of a derived predicate is the “above” pred-
icate in theBlocksworld, which is true between blocksx
andy wheneverx is transitively (possibly with some blocks
in between) ony. Using the derived predicates syntax, this
predicate can be defined as follows.

(:derived (above ?x ?y)
(or (on ?x ?y)

(exists (?z) (and (on ?x ?z)
(above ?z ?y)))))

Note that formulating the truth value of “above” in terms
of the effects of the normalBlocksworld actions is very awk-
ward (the unconvinced reader is invited to try). The predi-
cate is the transitive closure of the “on” relation.

Semantics
We now describe the updates that need to be made to the
PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). We introduce formal notations to cap-
ture the semantics of derived predicates. We then “hook”
these semantics into the PDDL2.1 language by modifying
two of the definitions in (Fox & Long 2003).

Say we are given the truth values of all (instances of the)
basic predicates, and want to compute the truth values of the
(instances of the) derived predicates from that. We are in this
situation every time we have applied an action, or parallel
action set. (In the durational context, we are in this situation
at the “happenings” in our current plan, that is every time a
durative action starts or finishes.) Formally, what we want to
have is a functionD that maps a set of basic facts (instances
of basic predicates) to the same set but enriched with derived
facts (the derivable instances of the derived predicates). As-
sume we are given the setR of rules for the derived predi-
cates, where the elements ofR have the form(P (x), φ(x))
– if φ(x) then P (x). ThenD(s), for a set of basic factss, is
defined as follows.

D(s) :=
⋂
{s′ | s ⊆ s′,∀(P (x), φ(x)) ∈ R : ∀c, |c| = |x| :

(s′ |= φ(c) ⇒ P (c) ∈ s′)}
This definition uses the standard notations of the modelling
relation|= between states (represented as sets of facts in our
case) and formulas, and of the substitutionφ(c) of the free
variables in formulaφ(x) with a constant vectorc. In words,
D(s) is the intersection of all supersets ofs that are closed
under application of the rulesR.

Remember that we restrict the rules to not contain any
derived predicates in negated form. This implies that the
order in which the rules are applied to a state does not matter
(we can not “lose” any derived facts by deriving other facts
first). This, in turn, implies thatD(s) is itself closed under
application of the rulesR. In other words,D(s) is the least
fixed point over the possible applications of the rulesR to
the state where all derived facts are assumed to be FALSE
(represented by their not being contained ins).

More constructively,D(s) can be computed by the fol-
lowing simple process.

s′ := s
do

selecta rule(P (x), φ(x)) and a vectorc of constants,
|c| = |x|, such thats′ |= φ(c)

let s′ := s′ ∪ {P (c)}
until no rule and constant vector could be selected
letD(s) := s′

In words, apply the applicable rules in an arbitrary order
until no new facts can be derived anymore.

We can now specify what an executable plan is in
PDDL2.1 with derived predicates. All we need to do is to
hook the functionD into Definition 13, “Happening Execu-
tion”, in (Fox & Long 2003). By this definition, Fox and
Long define the state transitions in a plan. The happenings
in a (temporal or non-temporal) plan are all time points at
which at least one action effect occurs. Fox and Long’s def-
inition is this:

Definition 13 Happening Execution (Fox and Long
(2003))
Given a state,(t, s,x) and a happening,H, theactivity for
H is the set of grounded actions

AH = {a| the name fora is in H, a is valid and
Prea is satisfied in(t, s,x)}

Theresult of executing a happening, H, associated with time
tH , in a state(t, s,x) is undefined if|AH | 6= |H| or if any
pair of actions inAH is mutex. Otherwise, it is the state
(tH , s′,x′) where

s′ = (s \
⋃

a∈AH

Dela) ∪
⋃

a∈AH

Adda (∗ ∗ ∗)

andx′ is the result of applying the composition of the func-
tions{NPFa | a ∈ AH} to x.

Note that the happenings consist of grounded actions, i.e.
all operator parameters are instantiated with constants. To
introduce the semantics of derived predicates, we now mod-
ify the result of executing the happening. (We will also adapt
the definition of mutex actions, see below.) The result of ex-
ecuting the happening is now obtained by applying the ac-
tions tos, then subtracting all derived facts from this, then
applying the functionD. That is, in the above definition we
replace(∗ ∗ ∗) with the following:

s′ = D(((s \
⋃

a∈AH

Dela) ∪
⋃

a∈AH

Adda) \D)

whereD denotes the set of all derived facts. If there are no
derived predicates,D is the empty set andD is the identity
function.

As an example, say we have aBlocksworld instance
where A is on B is on C,s = {clear(A), on(A,B),
on(B,C), ontable(C), above(A,B), above(B,C),
above(A,C)}, and our happening applies an action that
moves A to the table. Then the happening execution
result will be computed by removingon(A,B) from s,
adding clear(B) and ontable(A) into s, removing all
of above(A,B), above(B,C), and above(A,C) from s,
and applyingD to this, which will re-introduce (only)
above(B,C). Sos′ will be s′ = {clear(A), ontable(A),
clear(B), on(B,C), ontable(C), above(B,C) }.

By the definition of happening execution, Fox and Long
(Fox & Long 2003) define the state transitions in a plan. The
definitions of what an executable plan is, and when a plan
achieves the goal, are then standard. The plan isexecutable
if the result of all happenings in the plan is defined. This
means that all action preconditions have to be fulfilled in
the state of execution, and that no two pairs of actions in a
happening aremutex. The planachieves the goalif the goal
holds true in the state that results after the execution of all
actions in the plan.

With our above extension of the definition of happening
executions, the definitions of plan executability and goal
achievement need not be changed. We do, however, need
to adapt the definition of when a pair of actions is mutex.
This is important if the happenings can contain more than
one action, i.e. if we consider parallel (e.g. Graphplan-style)
or concurrent (durational) planning. Fox and Long (Fox &
Long 2003) give a conservative definition that forbids the
actions to interact in any possible way. The definition is the
following.

Definition 12 Mutex Actions (Fox and Long (2003))
Two grounded actions,a andb arenon-interferingif
GPrea ∩ (Addb ∪Delb) = GPreb ∩ (Adda ∪Dela) = ∅ (∗)

Adda ∩Delb = Addb ∩Dela = ∅
La ∩Rb = Ra ∩ Lb = ∅

La ∩ Lb ⊆ L∗a ∪ L∗b

If two actions are not non-interfering they aremutex.

Note that the definition talks about grounded actions
where all operator parameters are instantiated with con-
stants. La, Lb, Ra, and Rb refer to the left and right
hand side ofa’s and b’s numeric effects.Adda/Addb and
Dela/Delb area’s andb’s positive (add) respectively neg-
ative (delete) effects.GPrea/Gpreb denotes all (ground)
facts that occur ina’s/b’s precondition. If a precondition
contains quantifiers then these are grounded out (∀x trans-
forms to

∧
ci, ∃x transforms to

∨
ci where theci are all ob-

jects in the given instance), andGPre is defined over the re-
sulting quantifier-free (and thus variable-free) formula. Note
that this definition of mutex actions is very conservative – if,
e.g., factF occurs only positively ina’s precondition, then
it does not matter ifF is among the add effects ofb. The
conservative definition has the advantage that it makes it al-
gorithmically very easy to figure out if or if nota andb are
mutex.

In the presence of derived predicates, the above defini-
tion needs to be extended to exclude possible interactions
that can arise indirectly due to derived facts, in the precon-
dition of the one action, whose truth value depends on the
truth value of (basic) facts affected by the effects of the
other action. In the same spirit in that Fox and Long for-
bid any possibility of direct interaction, we now forbid any
possibility of indirect interaction. Assume we ground out
all rules(P (x), φ(x)) for the derived predicates, i.e. we in-
sert all possible vectorsc of constants; we also ground out
the quantifiers in the formulasφ(c), ending up with vari-
able free rules. We define a directed graph where the nodes
are (ground) facts, and an edge from factF to fact F ′ is
inserted iff there is a grounded rule(P (c), φ(c)) such that
F ′ = P (c), andF occurs inφ(c). Now say we have an ac-
tion a, where all ground facts occuring ina’s precondition
are, see above, denoted byGPrea. By DPrea we denote
all ground facts that can possibly influence the truth values
of the derived facts inGPrea:

DPrea := {F | there is a path fromF to anF ′ ∈ GPrea}
The definition of mutex actions is now updated simply by
replacing, in the above definition,(∗ ∗ ∗) with:

(DPrea ∪GPrea) ∩ (Addb ∪Delb) =
(DPreb ∪GPreb) ∩ (Adda ∪Dela) = ∅

As an example, reconsider theBlocksworld and the “above”
predicate. Assume that the action that moves a blockA to
the table requires as an additional, derived, precondition,
that A is above some third block. Then, in principle, two
actions that move two different blocksA andB to the ta-
ble can be executed in parallel. Which blockA (B) is on
can influence theabove relations in thatB (A) participates;
however, this does not matter because ifA andB can be
both moved then this implies that they are both clear, which
implies that they are on top of different stacks anyway. We
observe that the latter is a statement about the domain se-
mantics that either requires non-trivial reasoning, or access
to the world state in which the actions are executed. In order
to avoid the need to either do non-trivial reasoning about do-
main semantics, or resort to a forward search, our definition
is the conservative one given above. The definition makes
the actions movingA andB mutex on the grounds that they
can possibly influence each other’s derived preconditions.

The definition adaptions described above suffice to de-
fine the semantics of derived predicates for the whole of
PDDL2.2. Fox and Long reduce the temporal case to the
case of simple plans above, so by adapting the simple-plan
definitions we have automatically adapted the definitions of
the more complex cases. In the temporal setting, PDDL2.2
level 3, the derived predicates semantics are that their values
are computed anew at each happening in the plan where an
action effect occurs.

Timed Initial Literals
Timed initial literals are a syntactically very simple way of
expressing a certain restricted form of exogenous events:
facts that will become TRUE or FALSE at time points that
are known to the planner in advance, independently of the

actions that the planner chooses to execute. Timed initial lit-
erals are thus deterministic unconditional exogenous events.
Syntactically, we simply allow the initial state to specify –
beside the usual facts that are true at time point0 – literals
that will become true at time points greater than0.

Timed initial literals are practically very relevant: in the
real world, deterministic unconditional exogenous events
are very common, typically in the form of time windows
(within which a shop has opened, within which humans
work, within which traffic is slow, within which there is
daylight, within which a seminar room is occupied, within
which nobody answers their mail because they are all at con-
ferences, etc.).

Syntax
As said, the syntax simply allows literals with time points in
the initial state.

<init> :̄:= (:init <init-el> ∗)

<init-el> ::= :timed−initial−literals (at <number>
<literal(name)>)

The requirement flag for timed initial literals implies the
requirement flag for durational actions, i.e. as said the lan-
guage construct is only available in PDDL2.2 level 3. The
times<number> at which the timed literals occur are re-
stricted to be greater than0. If there are also derived pred-
icates in the domain, then the timed literals are restricted
to not influence any of these, i.e., like action effects they
are only allowed to affect the truth values of the basic (non-
derived) predicates (IPC-4 will not use both derived predi-
cates and timed initial literals within the same domain).

As an illustrative example, consider a planning task where
the goal is to be done with the shopping. There is a single
actiongo-shopping that achieves the goal, and requires the
(single) shop to be open as the precondition. The shop opens
at time 9 relative to the initial state, and closes at time 20.
We can express the shop opening times by two timed initial
literals:

(:init
(at 9 (shop-open))
(at 20 (not (shop-open)))

)

Semantics
We now describe the updates that need to be made to the
PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). Adapting two of the definitions suffices.

The first definition we need to adapt is the one that defines
what a “simple plan”, and its happening sequence, is. The
original definition by Fox and Long is this.

Definition 11 Simple Plan(Fox and Long (2003))
A simple plan, SP , for a planning instance,I, consists of
a finite collection oftimed simple actionswhich are pairs
(t, a), wheret is a rational-valued time anda is an action
name.

Thehappening sequence, {ti}i=0...k for SP is the ordered
sequence of times in the set of times appearing in the timed

simple actions inSP . All ti must be greater than0. It is
possible for the sequence to be empty (an empty plan).

Thehappeningat timet, Et, wheret is in the happening
sequence ofSP , is the set of (simple) action names that ap-
pear in timed simple actions associated with the timet in
SP .

In the STRIPS case, the time stamps are the natural num-
bers1, . . . , n when there aren actions/parallel action sets in
the plan. The happenings then are the actions/parallel action
sets at the respective time steps. Fox and Long reduce the
temporal planning case to the simple plan case defined here
by splitting each durational action up into at least two simple
actions – the start action, the end action, and possibly several
actions in between that guard the durational action’s invari-
ants at the points where other action effects occur. So in
the temporal case, the happening sequence is comprised of
all time points at which “something happens”, i.e. at which
some action effect occurs.

To introduce our intended semantics of timed initial liter-
als, all we need to do to this definition is to introduce ad-
ditional happenings into the temporal plan, namely the time
points at which some timed initial literal occurs. The timed
initial literals can be interpreted as simple actions that are
forced into the respective happenings (rather than selected
into them by the planner), whose precondition is true, and
whose only effect is the respective literal. The rest of Fox
and Long’s definitions then carry over directly (except goal
achievement, which involves a little care, see below). The
PDDL2.2 definition of simple plans is this here.

Definition 11 Simple Plan
A simple plan, SP , for a planning instance,I, consists of
a finite collection oftimed simple actionswhich are pairs
(t, a), wheret is a rational-valued time anda is an action
name. Bytend we denote the largest timet in SP , or 0 if
SP is empty.

LetTL be the (finite) set of all timed initial literals, given
as pairs (t, l) where t is the rational-valued time of oc-
curence of the literall. We identify each timed initial lit-
eral (t, l) in TL with a uniquely named simple action that
is associated with timet, whose precondition is TRUE, and
whose only effect isl.

Thehappening sequence, {ti}i=0...k for SP is the ordered
sequence of times in the set of times appearing in the timed
simple actions inSP andTL. All ti must be greater than0.
It is possible for the sequence to be empty (an empty plan).

Thehappeningat timet, Et, wheret is in the happening
sequence ofSP , is the set of (simple) action names that ap-
pear in timed simple actions associated with the timet in
SP or TL.

Thus the happenings in a temporal plan are all points in
time where either an action effect, or a timed literal, occurs.
The timed literals are simple actions forced into the plan.
With this construction, Fox and Long’s Definitions 12 (Mu-
tex Actions) and 13 (Happening Execution), as described
(and adapted to derived predicates) in Section , can be kept
unchanged. They state that no action effect is allowed to in-
terfere with a timed initial literal, and that the timed initial

literals are true in the state that results from the execution of
the happening they are contained in. Fox and Long’s Defini-
tion 14 (Executability of a plan) can also be kept unchanged
– the timed initial literals change the happenings in the plan,
but not the conditions under which a happening can be exe-
cuted.

The only definition we need to re-think is that of what
themakespanof a valid plan is. In Fox and Long’s original
definition, this is implicit in the definition of vaild plans. The
definition is this.

Definition 15 Validity of a Simple Plan (Fox and Long
(2003))
A simple plan (for a planning instance,I) is valid if it is
executable and produces a final stateS, such that the goal
specification forI is satisfied inS.

The makespan of the valid plan is accessible in PDDL2.1
and PDDL2.2 by the “total-time” variable that can be used in
the optimization expression. Naturally, Fox and Long take
the makespan to be the end of the plan, the time point of the
plan’s final state.

In the presence of timed initial literals, the question of
what the plan’s makespan is becomes a little more sub-
tle. With Fox and Long’s above original definition, the
makespan would be the end of all happenings in the simple
plan, whichincludeall timed initial literals (see the revised
Definition 11 above). So the plan would at least take as long
as it takes until no more timed literals occur. But a plan
might be finished long before that – imagine something that
needs to be done while there is daylight; certainly the plan
does not need to wait until sunset. We therefore define the
makespan to be the earliest point in time at which the goal
condition becomes (and remains) true. Formally this reads
as follows.

Definition 15 Validity and Makespan of a Simple Plan
A simple plan (for a planning instance,I) is valid if it is
executable and produces a final stateS, such that the goal
specification forI is satisfied inS. The plan’smakespanis
the smallestt ≥ tend such that, for all happenings at times
t′ ≥ t in the plan’s happening sequence, the goal specifica-
tion is satisfied after execution of the happening.

Remember thattend denotes the time of the last happen-
ing in the plan that contains an effect caused by the plan’s
actions – in simpler terms,tend is the end point of the
plan. What the definition says is that the plan is valid if,
at some time pointt after the plan’s end, the goal condi-
tion is achieved and remains true until after the last timed
literal has occured. The plan’s makespan is the first such
time point t. Note that the planner can “use” the events
to achieve the goal, by doing nothing until a timed literal
occurs that makes the goal condition true – but then the
waiting time until the nearest such timed literal is counted
into the plan’s makespan. (The latter is done to avoid situa-
tions where the planner could prefer to wait millions of years
rather than just applying a single action itself.) Remember
that the makespan of the plan, defined as above, is what can

be denoted bytotal-time in the optimization expression
defined with the problem instance.

Acknowledgements. We would like to thank the IPC-4
organizing committee for their help in taking the decision
about the language for the classical part of IPC-4, and in
ironing out the details about syntax and semantics. The peo-
ple contributing to this discussion were Drew McDermott,
Daniel Weld, David Smith, Hakan Younes, Jussi Rintanen,
Sylvie Thiebaux, Maria Fox, and Derek Long. We espe-
cially thank Maria Fox and Derek Long for giving us the
latex sources of their PDDL2.1 article, and for discussing
the modifications of this document needed to introduce the
semantics of derived predicates and timed initial literals.

References
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classical part of the 4th international plan-
ning competition. Technical Report 195, Albert-Ludwigs-
Universiẗat, Institut f̈ur Informatik, Freiburg, Germany.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research. Special issue on the 3rd
International Planning Competition, to appear.
McDermott, D., et al. 1998.The PDDL Planning Domain
Definition Language. The AIPS-98 Planning Competition
Comitee.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Nebel, B.;
Swartout, W.; and Rich, C., eds.,Principles of Knowledge
Representation and Reasoning: Proceedings of the 3rd In-
ternational Conference (KR-92), 103–114. Cambridge,
MA: Morgan Kaufmann.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In de-
fense of PDDL axioms. In Gottlob, G., ed.,Proceedings of
the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-03). Acapulco, Mexico: Morgan Kaufmann.
accepted for publication.

