
Complete BNF description of PDDL 3.1 (partially corrected, with comments) Daniel L. Kovacs (dkovacs@mit.bme.hu)

1

1 BNF definition of PDDL 3.1

Hereby a complete BNF syntax definition of the PDDL 3.1 language is presented (with

comments and indications of minor corrections) based on the originally published articles

and information about PDDL 1.2, 2.1, 2.2, 3.0 and 3.1 [1-5].

1.1 Domain description

<domain> ::= (define (domain <name>)

[<require-def>]

[<types-def>]
:typing

[<constants-def>]

[<predicates-def>]

[<functions-def>]
:fluents

[<constraints>]

<structure-def>*)

<require-def> ::= (:requirements <require-key>
+
)

<require-key> ::= See Section 1.3

<types-def> ::= (:types <typed list (name)>)

<constants-def> ::= (:constants <typed list (name)>)

<predicates-def> ::= (:predicates <atomic formula skeleton>
+
)

<atomic formula skeleton> ::= (<predicate> <typed list (variable)>)

<predicate> ::= <name>

<variable> ::= ?<name>

<atomic function skeleton> ::= (<function-symbol> <typed list (variable)>)

<function-symbol> ::= <name>

<functions-def> ::=
:fluents

 (:functions <function typed list (atomic function skeleton)>)

<function typed list (x)> ::= x
+
 - <function type> <function typed list(x)>

<function typed list (x)> ::=

<function typed list (x)> ::=
:numeric-fluents

 x
+

 This is deprecated since PDDL 3.1, where the default fluent type is number.

<function type> ::=
:numeric-fluents

 number

<function type> ::=
:object-fluents

 object

<function type> ::=
:typing + :object-fluents

 <type>

<constraints> ::=
:constraints

 (:constraints <con-GD>)

<structure-def> ::= <action-def>

<structure-def> ::=
:durative−actions

 <durative-action-def>

<structure-def> ::=
:derived−predicates

 <derived-def>

<typed list (x)> ::= x*

<typed list (x)> ::=
:typing

 x
+
 - <type> <typed list(x)>

<primitive-type> ::= <name>

<primitive-type> ::= object

<type> ::= (either <primitive-type>
+
)

<type> ::= <primitive-type>

<emptyOr (x)> ::= ()

<emptyOr (x)> ::= x

<action-def> ::= (:action <action-symbol>

:parameters (<typed list (variable)>)

<action-def body>)

<action-symbol> ::= <name>

<action-def body> ::= [:precondition <emptyOr (pre-GD)>]

 [:effect <emptyOr (effect)>]

<pre-GD> ::= <pref-GD>

<pre-GD> ::= (and <pre-GD>*)

<pre-GD> ::=
:universal−preconditions

 (forall (<typed list(variable)>) <pre-GD>)

<pref-GD> ::=
:preferences

 (preference [<pref-name>] <GD>)

<pref-GD> ::= <GD>

<pref-name> ::= <name>

<GD> ::= <atomic formula(term)>

<GD> ::=
:negative−preconditions

 <literal(term)>

<GD> ::= (and <GD>*)

<GD> ::=
:disjunctive−preconditions

 (or <GD>*)

<GD> ::=
:disjunctive−preconditions

 (not <GD>)

<GD> ::=
:disjunctive−preconditions

 (imply <GD> <GD>)

<GD> ::=
:existential−preconditions

 (exists (<typed list(variable)>) <GD>)

<GD> ::=
:universal−preconditions

 (forall (<typed list(variable)>) <GD>)

<GD> ::=
:numeric-fluents

 <f-comp>

<f-comp> ::= (<binary-comp> <f-exp> <f-exp>)

<literal(t)> ::= <atomic formula(t)>

<literal(t)> ::= (not <atomic formula(t)>)

<atomic formula(t)> ::= (<predicate> t*)

<atomic formula(t)> ::=
:equality

 (= t t)

<term> ::= <name>

<term> ::= <variable>

<term> ::=:object-fluents <function-term>

<function-term> ::=:object-fluents (<function-symbol> <term>*)

<f-exp> ::=:numeric-fluents <number>

<f-exp> ::=:numeric-fluents (<binary-op> <f-exp> <f-exp>)

<f-exp> ::=:numeric-fluents (- <f-exp>)

<f-exp> ::=:numeric-fluents <f-head>

<f-head> ::= (<function-symbol> <term>*)

Megjegyzés [ED1]: I put these 3 lines a

little bit higher here compared to where
they were in the original PDDL definition

(because it may be more logical this way).

Megjegyzés [ED2]: This row is not

necessary if <primitive-type> can be

object (this would be the best, but since

the earliest definitions of PDDL this was

always left out somehow, and it is
interesting not only because of version 3.1’s

object-fluents).

Megjegyzés [ED3]: This wasn’t yet

explicitly declared (in neither version of
PDDL). So this is a correction.

Megjegyzés [ED4]: The definition of
the built-in, 2-ary = predicate in case of the

:equality requirement is given.

…somehow this was also left out from
PDDL definitions until now. So this is also

a correction here.

Megjegyzés [DLK5]: There is no

<multi-op> version here such as in the

problem definition, among the rules for

<metric-f-exp> (cf. 1.2).

Complete BNF description of PDDL 3.1 (partially corrected, with comments) Daniel L. Kovacs (dkovacs@mit.bme.hu)

2

<f-head> ::= <function-symbol>

<binary-op> ::= <multi-op>

<binary-op> ::= −

<binary-op> ::= /

<multi-op> ::= *

<multi-op> ::= +

<binary-comp> ::= >

<binary-comp> ::= <

<binary-comp> ::= =

<binary-comp> ::= >=

<binary-comp> ::= <=

<name> ::= Any string of characters.

<number> ::= Any numeric literal (integers and floats of form n.n).

<effect> ::= (and <c-effect>*)

<effect> ::= <c-effect>

<c-effect> ::=:conditional−effects (forall (<typed list (variable)>*) <effect>)

<c-effect> ::=:conditional−effects (when <GD> <cond-effect>)

<c-effect> ::= <p-effect>

<p-effect> ::= (<assign-op> <f-head> <f-exp>)

<p-effect> ::= (not <atomic formula(term)>)

<p-effect> ::= <atomic formula(term)>

<p-effect> ::=:numeric-fluents (<assign-op> <f-head> <f-exp>)

<p-effect> ::=:object-fluents (assign <function-term> <term>)

<p-effect> ::=:object-fluents (assign <function-term> undefined)

<cond-effect> ::= (and <p-effect>*)

<cond-effect> ::= <p-effect>

<assign-op> ::= assign

<assign-op> ::= scale-up

<assign-op> ::= scale-down

<assign-op> ::= increase

<assign-op> ::= decrease

<durative-action-def> ::= (:durative-action <da-symbol>

:parameters (<typed list (variable)>)

<da-def body>)

<da-symbol> ::= <name>

<da-def body> ::= :duration <duration-constraint>

 :condition <emptyOr (da-GD)>

 :effect <emptyOr (da-effect)>

<da-GD> ::= <pref-timed-GD>

<da-GD> ::= (and <da-GD>*)

<da-GD> ::=:universal−preconditions (forall (<typed-list (variable)>) <da-GD>)

<pref-timed-GD> ::= <timed-GD>

<pref-timed-GD> ::=:preferences (preference [<pref-name>] <timed-GD>)

<timed-GD> ::= (at <time-specifier> <GD>)

<timed-GD> ::= (over <interval> <GD>)

<time-specifier> ::= start

<time-specifier> ::= end

<interval> ::= all

<duration-constraint> ::=:duration−inequalities (and <simple-duration-constraint>+)

<duration-constraint> ::= ()

<duration-constraint> ::= <simple-duration-constraint>

<simple-duration-constraint> ::= (<d-op> ?duration <d-value>)

<simple-duration-constraint> ::= (at <time-specifier> <simple-duration-constraint>)

<d-op> ::=:duration−inequalities <=

<d-op> ::=:duration−inequalities >=

<d-op> ::= =

<d-value> ::= <number>

<d-value> ::=:numeric-fluents <f-exp>

<da-effect> ::= (and <da-effect>*)

<da-effect> ::= <timed-effect>

<da-effect> ::=:conditional−effects (forall (<typed list (variable)>) <da-effect>)

<da-effect> ::=:conditional−effects (when <da-GD> <timed-effect>)

<da-effect> ::=:numeric-fluents (<assign-op> <f-head> <f-exp-da>)

<timed-effect> ::= (at <time-specifier> <cond-effect>)

<timed-effect> ::=:numeric-fluents (at <time-specifier> <f-assign-da>)

<timed-effect> ::=:continuous−effects + :numeric-fluents (<assign-op-t> <f-head> <f-exp-t>)

<f-assign-da> ::= (<assign-op> <f-head> <f-exp-da>)

<f-exp-da> ::= (<binary-op> <f-exp-da> <f-exp-da>)

<f-exp-da> ::= (- <f-exp-da>)

<f-exp-da> ::=:duration−inequalities ?duration

<f-exp-da> ::= <f-exp>

Megjegyzés [DLK6]: This part is
overly underspecified. For example may

<name> be a PDDL domain description?

Absolutely not. So a correction is needed

here to specify exactly what we allow and
what we do not allow for names and

numbers. The correction can be based e.g.

on Florent Teichteil-Königsbuch’s paper
from ICAPS-2008, titled “Extending

PPDDL1.0 to Model Hybrid Markov

Decision Processes”. The need for such a
correction was suggested by Éric Jacopin.

Megjegyzés [DLK7]: This must be an
error here... Should be deleted (the *).

Megjegyzés [ED8]: 3 rows higher the

same is given, but in an unconditional
form… So I think that is not needed, and

only this row here is necessary. This is so

since the article describing the BNF of
PDDL 2.1 (e.g. in the BNF of PDDL 3.0).

Comment: „…numeric fluents, which …

start being undefined… never become

undefined again once a value has been
assigned…”

Megjegyzés [ED9]: „Note that

undefined is not a term, so it cannot be

referred to in conditions.”

Megjegyzés [DLK10]: This row stems
from the BNF-specification of PDDL 2.1.

The problem with it is that it would allow a
durative action to have a numeric effect,

which is not temporally annotated

although the paper introducing PDDL 2.1
states that „All conditions and effects of

durative actions must be temporally

annotated” (see. Section 5, under Figure 6).
This is an error here... So this line needs to

be deleted. Two lines below it temporally

annotated numeric effects are allowed.

Megjegyzés [DLK11]: Instead of this
in the paper describing PDDL 2.1 and also

3.0 <a-effect> is written, which is not

defined. The choice of <cond-effect>

is eventually the result of discussions with

Gabriele Röger and Derek Long. Otherwise

<p-effect> or just <effect> could

also be a candidate, but they would

respectively either overly simplify or overly
complicate the intended syntax, not to

speak of the underlying semantics, which

should be definite in any case. So this here
is also a correction.

Megjegyzés [ED12]: This conditional
requirement of this row wasn’t part of
neither specification, so it is now a

correction...

Megjegyzés [ED13]: This was also left
out from prev. specifications: correction.

Megjegyzés [DLK14]: Similarly to the
non-durative case (see. comment DLK5),

there is again no <multi-op> version

here such as in the problem definition,

among the rules for <metric-f-exp>

(cf. 1.2).

Complete BNF description of PDDL 3.1 (partially corrected, with comments) Daniel L. Kovacs (dkovacs@mit.bme.hu)

3

<assign-op-t> ::= increase

<assign-op-t> ::= decrease

<f-exp-t> ::= (* <f-exp> #t)

<f-exp-t> ::= (* #t <f-exp>)

<f-exp-t> ::= #t

<derived-def> ::= (:derived <typed list (variable)> <GD>)

1.2 Problem description

<problem> ::= (define (problem <name>)

(:domain <name>)

[<require-def>]

[<object declaration>]

<init>

<goal>

[<constraints>]
:constraints

[<metric-spec>]
:numeric-fluents

[<length-spec>])

<object declaration> ::= (:objects <typed list (name)>)

<init> ::= (:init <init-el>*)

<init-el> ::= <literal(name)>

<init-el> ::=
:timed−initial−literals

 (at <number> <literal(name)>)

<init-el> ::=
:numeric-fluents

 (= <f-head> <number>)

<init-el> ::=
:object-fluents

 (= <basic-function-term> <name>)

<basic-function-term> ::= <function-symbol>

<basic-function-term> ::= (<function-symbol> <name>*)

<goal> ::= (:goal <pre-GD>)

<constraints> ::=
:constraints

 (:constraints <pref-con-GD>)

<pref-con-GD> ::= (and <pref-con-GD>*)

<pref-con-GD> ::=
:universal−preconditions

 (forall (<typed list (variable)>) <pref-con-GD>)

<pref-con-GD> ::=
:preferences

 (preference [<pref-name>] <con-GD>)

<pref-con-GD> ::= <con-GD>

<con-GD> ::= (and <con-GD>*)

<con-GD> ::= (forall (<typed list (variable)>) <con-GD>)

<con-GD> ::= (at end <GD>)

<con-GD> ::= (always <GD>)

<con-GD> ::= (sometime <GD>)

<con-GD> ::= (within <number> <GD>)

<con-GD> ::= (at-most-once <GD>)

<con-GD> ::= (sometime-after <GD> <GD>)

<con-GD> ::= (sometime-before <GD> <GD>)

<con-GD> ::= (always-within <number> <GD> <GD>)

<con-GD> ::= (hold-during <number> <number> <GD>)

<con-GD> ::= (hold-after <number> <GD>)

<metric-spec> ::=
:numeric-fluents

 (:metric <optimization> <metric-f-exp>)

<optimization> ::= minimize

<optimization> ::= maximize

<metric-f-exp> ::= (<binary-op> <metric-f-exp> <metric-f-exp>)

<metric-f-exp> ::= (<multi-op> <metric-f-exp> <metric-f-exp>
+
)

<metric-f-exp> ::= (- <metric-f-exp>)

<metric-f-exp> ::= <number>

<metric-f-exp> ::= (<function-symbol> <name>*)

<metric-f-exp> ::= <function-symbol>

<metric-f-exp> ::= total-time

<metric-f-exp> ::=
:preferences

 (is-violated <pref-name>)

<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

 The length-spec is deprecated since PDDL 2.1.

1.2.1 Lifting restrictions (from constraint declaration)

<con-GD> ::= (always <con-GD>)

<con-GD> ::= (sometime <con-GD>)

<con-GD> ::= (within <number> <con-GD>)

<con-GD> ::= (at-most-once <con-GD>)

<con-GD> ::= (sometime-after <con-GD> <con-GD>)

<con-GD> ::= (sometime-before <con-GD> <con-GD>)

<con-GD> ::= (always-within <number> <con-GD> <con-GD>)

<con-GD> ::= (hold-during <number> <number> <con-GD>)

<con-GD> ::= (hold-after <number> <con-GD>)

Megjegyzés [ED15]: These rules are
part of the BNF definition describing PDDL

2.1, but were somehow left out from the
definition of PDDL 3.0…

Megjegyzés [DLK16]: This is an error,
since there is no mention of the related

<predicate>. This is so since PDDL2.2

in [3] (see. Sec. 2.1 and A.4) and PDDL 3.0

in [4] (see. Sec. 2.4). [3] would suggest

maybe <atomic formula(term)>

instead of <typed

list(variable)>, but then there

would be no types in the head of the

derived-rule. To include both the name of
the related predicate and the types of

variables we’d need to write <atomic

formula skeleton>. Thanks for

bringing this issue to my attention to Ron
Alford.

Megjegyzés [ED17]: This row allows
us to add negated facts to the initial state.

Megjegyzés [DLK18]: PDDL 2.2
defined this so that it can have only facts,

and not for example value assignments to

numerical, or now even object fluents...

Megjegyzés [DLK19]: This may not be
grounded, thus this is an error. It is part of

the language since PDDL 2.1. For

simplicity <basic-function-term>

may be used instead.

Megjegyzés [ED20]: This here is in a

bit different order than on the IPC6
webpage http://ipc.informatik.uni-
freiburg.de/PddlExtension (at the „Initial
values for object fluents” part).

Comment.: <basic-function-term>
should be part of the problem description
and not the domain description (since the

domain description is never referring to it in

contrary to the problem description).

Megjegyzés [ED21]: There was a
typing error in the PDDL 3.0 definition

(„::” instead of „::=”). Correction.

Megjegyzés [ED22]: If we wish to
embed modal operators into each other,
then instead of these rules we should use

those in section 1.2.1.

Megjegyzés [ED23]: This was left out

from the PDDL articles… Correction.

Megjegyzés [ED24]: Before the PDDL

3.0 article this was <ground-f-exp>.

Megjegyzés [DLK25]: It is important

to observe, that in contrary to f-exp, here

is name, and not term (for the metric to

be grounded, without variables, objects...).

Megjegyzés [ED26]: This was left out

from the PDDL 3.0 article... Correction.

Megjegyzés [ED27]: This also was left
out from the PDDL 3.0 (and from PDDL

2.2 too), but it was part of the PDDL 2.1.

Megjegyzés [DLK28]: This is ill
defined, since if these rules would be put in

the grammar, then there would be no

normal end to the recursive embedding of

the modal operators. con-GD should be

somehow transformed to GD too, but not

directly, since then it would be equal

(con-GD should not be equal to GD).

http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension

Complete BNF description of PDDL 3.1 (partially corrected, with comments) Daniel L. Kovacs (dkovacs@mit.bme.hu)

4

1.3 Requirements

Here is a table of all requirements in PDDL3.1. Some requirements imply others; some are abbreviations for common sets of requirements. If a domain

stipulates no requirements, it is assumed to declare a requirement for :strips.

:strips Basic STRIPS-style adds and deletes

:typing Allow type names in declarations of variables

:negative-preconditions Allow not in goal descriptions

:disjunctive-preconditions Allow or in goal descriptions

:equality Support = as built-in predicate

:existential-preconditions Allow exists in goal descriptions

:universal-preconditions Allow forall in goal descriptions

:quantified-preconditions = :existential-preconditions

+ :universal-preconditions

:conditional-effects Allow when in action effects

:fluents = :numeric-fluents

+ :object-fluents

:numeric-fluents Allow numeric function definitions and use of effects using assignment operators and arithmetic

preconditions.

:adl = :strips + :typing

+ :negative-preconditions

+ :disjunctive-preconditions

+ :equality

+ :quantified-preconditions

+ :conditional-effects

:durative-actions Allows durative actions. Note that this does not imply :numeric-fluents.

:duration-inequalities Allows duration constraints in durative actions using inequalities.

:continuous-effects Allows durative actions to affect fluents continuously over the duration of the actions.

:derived-predicates Allows predicates whose truth value is defined by a formula

:timed-initial-literals Allows the initial state to specify literals that will become true at a specified time point. Implies

:durative-actions

:preferences Allows use of preferences in action preconditions and goals.

:constraints Allows use of constraints fields in domain and problem files. These may contain modal operators

supporting trajectory constraints.

:action-costs If this requirement is included in a PDDL specification, the use of numeric fluents is enabled (similar to

the :numeric-fluents requirement). However, numeric fluents may only be used in certain very

limited ways:

1. Numeric fluents may not be used in any conditions (preconditions, goal conditions,

conditions of conditional effects, etc.).

2. A numeric fluent may only be used as the target of an effect if it is 0-ary and called total-

cost. If such an effect is used, then the total-cost fluent must be explicitly initialized

to 0 in the initial state.

3. The only allowable use of numeric fluents in effects is in effects of the form (increase

(total-cost) <numeric-term>), where the <numeric-term> is either a non-

negative numeric constant or of the form (<function-symbol> <term>*). (The

<term> here is interpreted as shown in the PDDL grammar, i.e. it is a variable symbol or an

object constant. Note that this <term> cannot be a <function-term>, even if the object

fluents requirement is used.)

4. No numeric fluent may be initialized to a negative value.

5. If the problem contains a :metric specification, the objective must be (minimize

(total-cost)), or - only if the :durative-actions requirement is also set - to

minimize a linear combination of total-cost and total-time, with non-negative

coefficients.

Note that an action can have multiple effects that increase (total-cost), which is particularly useful

in the context of conditional effects.

Also note that these restrictions imply that (total-cost) never decreases throughout plan execution,

i.e., action costs are never negative.

Megjegyzés [ED29]: This was also left

out from the PDDL 3.0 article (and from
PDDL 2.2 too), but it is part of PDDL 2.1.

Comment: are :fluents or :numeric-

fluents requirements implied by these

two highlighted requirements? - it would be

logical.

Complete BNF description of PDDL 3.1 (partially corrected, with comments) Daniel L. Kovacs (dkovacs@mit.bme.hu)

5

References

[1] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.; Weld,

D., Wilkins, D. (1998). PDDL---The Planning Domain Definition Language.

Technical Report CVC TR98003/DCS TR1165, Yale Center for Computational

Vision and Control, New Haven, CT.

[2] Fox M., Long D. (2003). PDDL2.1: An Extension to pddl for Expressing Temporal

Planning Domains, Journal of Artificial Intelligence Research 20: 61-124.

[3] Edelkamp S., Hoffmann J. (2004). PDDL2.2: The Language for the Classical Part

of the 4th International planning Competition, Technical Report No. 195, Institut

für Informatik.

[4] Gerevini, A. Long D. (2005). BNF Description of PDDL3.0. Unpublished

manuscript from the IPC-5 website.

[5] Helmert, M. (2008). Changes in PDDL 3.1.

http://ipc.informatik.uni-freiburg.de/PddlExtension

http://ipc.informatik.uni-freiburg.de/PddlExtension

